应用化学 ›› 2025, Vol. 42 ›› Issue (10): 1323-1334.DOI: 10.19894/j.issn.1000-0518.250188
收稿日期:2025-05-08
接受日期:2025-08-05
出版日期:2025-10-01
发布日期:2025-10-29
通讯作者:
刘国明
基金资助:
Yu LI1,2, Jiao MU3, Du-Jin WANG1,2, Guo-Ming LIU1,2(
)
Received:2025-05-08
Accepted:2025-08-05
Published:2025-10-01
Online:2025-10-29
Contact:
Guo-Ming LIU
About author:gmliu@iccas.ac.cnSupported by:摘要:
聚乙烯醇缩丁醛(PVB)具有优异的光学透过性和粘附性,被广泛应用于夹层玻璃材料,测定无定形聚合物的玻璃化转变温度(Tg)具有重要意义。 本文通过在PVB分子链上接枝罗丹明B(Rhb)作为荧光探针,结合激光共聚焦显微镜联用荧光寿命成像(FLIM),利用荧光寿命随温度的变化的折点表征PVB材料的Tg,并将测量结果与差示扫描量热法(DSC)的结果相对比,共混质量分数2%的PVB-Rhb测得的Tg和DSC得到的Tg完全吻合,证明荧光法测量Tg的准确性和灵敏性。 同时,将这种方法运用到薄膜体系,系统研究了荧光探针质量分数、样品厚度对Tg的影响,建立了薄膜厚度和Tg的定量关系,发现Tg随PVB薄膜厚度降低而升高。 实验结果证明了FLIM是一种测量聚合物Tg的有力工具,对表征基底支撑的聚合物薄膜样品以及处于特殊空间位置或受限环境的聚合物样品的Tg有突出优势。
中图分类号:
李彧, 穆娇, 王笃金, 刘国明. 利用荧光寿命测量聚乙烯醇缩丁醛的玻璃化转变温度[J]. 应用化学, 2025, 42(10): 1323-1334.
Yu LI, Jiao MU, Du-Jin WANG, Guo-Ming LIU. Probing the Glass Transition Temperature of Poly(vinyl butyral) Using Fluorescence Lifetime[J]. Chinese Journal of Applied Chemistry, 2025, 42(10): 1323-1334.
图9 共混不同比例PVB-Rhb的薄膜荧光寿命随温度的变化曲线A. PVB/PVB-Rhb(0.5%); B. PVB/PVB-Rhb(1%); C. PVB/PVB-Rhb(2%)
Fig.9 Temperature dependence of the fluorescence lifetime curves for different fluorescence contents
图11 不同厚度PVB/PVB-Rhb薄膜荧光寿命随温度的变化A. 96 nm; B. 177 nm; C. 1.8 μm; D. 4.5 μm; E. 50 μm; F. The diagram of the relationship between d-1 and Tg
Fig.11 Temperature dependence of the fluorescence lifetime curves for PVB/PVB-Rhb(2%) films of different thicknesses
| [1] | BRIATICO-VANGOSA F, RINK M. Dilatometric behavior and glass transition in a styrene-acrylonitrile copolymer[J]. J Polym Sci B Polym Phys, 2005, 43(14): 1904-1913. |
| [2] | PIONTECK J. Determination of pressure dependence of polymer phase transitions by pVT analysis[J]. Polymers, 2018, 10(6): 578. |
| [3] | ZHENG Q J, ZHANG Y F, MONTAZERIAN M, et al. Understanding glass through differential scanning calorimetry[J]. Chem Rev, 2019, 119(13): 7848-7939. |
| [4] | ARANDIA I, MUGICA A, ZUBITUR M, et al. The complex amorphous phase in poly(butylene succinate-ran-butylene azelate) isodimorphic copolyesters[J]. Macromolecules, 2017, 50(4): 1569-1578. |
| [5] | CHEN H M, LIU G M, QIN Y P, et al. Structural transitions in solution-cast films of a new AABB type thiophene copolymer[J]. Macromolecules, 2016, 49(22): 8653-8660. |
| [6] | LUTKENHAUS J L, HRABAK K D, MCENNIS K, et al. Elastomeric flexible free-standing hydrogen-bonded nanoscale assemblies[J]. J Am Chem Soc, 2005, 127(49): 17228-17234. |
| [7] | CAO Z, ZHOU Q Z, JIE S Y, et al. High cis-1,4 hydroxyl-terminated polybutadiene-based polyurethanes with extremely low glass transition temperature and excellent mechanical properties[J]. Ind Eng Chem Res, 2016, 55(6): 1582-1589. |
| [8] | PIZZANELLI S, PREVOSTO D, LABARDI M, et al. Dynamics of poly(vinyl butyral) studied using dielectric spectroscopy and 1H NMR relaxometry[J]. Phys Chem Chem Phys, 2017, 19(47): 31804-31812. |
| [9] | KESSAIRI K, NAPOLITANO S, CAPACCIOLI S, et al. Molecular dynamics of atactic poly(propylene) investigated by broadband dielectric spectroscopy[J]. Macromolecules, 2007, 40(6): 1786-1788. |
| [10] | ELLISON C J, TORKELSON J M. Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labels[J]. J Polym Sci B Polym Phys, 2002, 40(24): 2745-2758. |
| [11] | DEMAGGIO G B, FRIEZE W E, GIDLEY D W, et al. Interface and surface effects on the glass transition in thin polystyrene films[J]. Phys Rev Lett, 1997, 78(8): 1524-1527. |
| [12] | BÄUMCHEN O, MCGRAW J D, FORREST J A, et al. Reduced glass transition temperatures in thin polymer films: surface effect or artifact?[J]. Phys Rev Lett, 2012, 109(5): 055701. |
| [13] | MATTSSON J, FORREST J A, BÖRJESSON L. Quantifying glass transition behavior in ultrathin free-standing polymer films[J]. Phys Rev E, 2000, 62(4): 5187-5200. |
| [14] | FAKHRAAI Z, FORREST J A. Measuring the surface dynamics of glassy polymers[J]. Science, 2008, 319(5863): 600-604. |
| [15] | REITER G. Dewetting as a probe of polymer mobility in thin-films[J]. Macromolecules, 1994, 27(11): 3046-3052. |
| [16] | VIGNAUD G, CHEBIL M S, BAL J K, et al. Densification and depression in glass transition temperature in polystyrene thin films[J]. Langmuir, 2014, 30(39): 11599-11608. |
| [17] | GIERMANSKA J, BEN JABRALLAH S, DELORME N, et al. Direct experimental evidences of the density variation of ultrathin polymer films with thickness[J]. Polymer, 2021, 228: 123934. |
| [18] | KEDDIE J L, JONES R A L, CORY R A. Size-dependent depression of the glass-transition temperature in polymer-films[J]. Europhys Lett, 1994, 27(1): 59-64. |
| [19] | FUKAO K, MIYAMOTO Y. Glass transitions and dynamics in thin polymer films: dielectric relaxation of thin films of polystyrene[J]. Phys Rev E, 2000, 61(2): 1743-1754. |
| [20] | SAMBATH K, LIU X, WAN Z, et al. Potassium ion fluorescence probes: structures, properties and bioimaging[J]. ChemPhotoChem, 2020, 5(4): 317-325. |
| [21] | TANG Y, PEI F, LU X, et al. Recent advances on activatable NIR-Ⅱ fluorescence probes for biomedical imaging[J]. Adv Optical Mater, 2019, 7(21): 1900917. |
| [22] | ZHAO H, HU W B, FAN Q L. Two-photon fluorescence probe in bio-sensor[J]. Prog Chem, 2022, 34(4): 815-823. |
| [23] | 厉圆圆, 卢修联, 刘欣雨, 等. 具有红色荧光性质的掺硒碳点在生物传感和抗菌中的多功能应用[J]. 无机化学学报, 2024, 40(1): 173-181. |
| LI Y Y, LU X L, LIU X Y, et al. Selenium-doped carbon dots with red fluorescence properties have multi-functional applications in biosensing and antibacterial fields[J]. J Inorg Chem, 2024, 40(1): 173-181. | |
| [24] | SACHER W D, CHEN F D, MORADI-CHAMEH H, et al. Implantable photonic neural probes for light-sheet fluorescence brain imaging[J]. Neurophotonics, 2021, 8(2): 025003. |
| [25] | DING P S, WAHN H, CHEN F D, et al. Photonic neural probe enabled microendoscopes for light-sheet light-field computational fluorescence brain imaging[J]. Neurophotonics, 2024, 11(Suppl 1): S11503. |
| [26] | SEO Y, PARK K S, HA T, et al. A smart near-infrared fluorescence probe for selective detection of Tau fibrils in Alzheimer's disease[J]. ACS Chem Neurosci, 2016, 7(11): 1474-1481. |
| [27] | 陈宇航, 李潇. 具有聚集诱导发光效应的荧光探针在生物医学中的应用[J]. 生物医学工程研究, 2021, 40(1): 94-99. |
| CHEN Y H, LI X. The application of fluorescent probes with aggregation-induced emission effect in biomedicine[J]. Biomed Eng Res, 2021, 40(1): 94-99. | |
| [28] | REISCH A, DIDIER P, RICHERT L, et al. Collective fluorescence switching of counterion-assembled dyes in polymer nanoparticles[J]. Nat Commun, 2014, 5: 4089. |
| [29] | SCHRAIVOGEL D, KUHN T M, RAUSCHER B, et al. High-speed fluorescence image-enabled cell sorting[J]. Science, 2022, 375(6578): 315-320. |
| [30] | 闫婉露, 苏伟涛, 陈大钦. 荧光寿命成像技术及其在生物医学领域的应用[J]. 发光学报, 2025, 46(1): 46-59. |
| YAN W L, SU W T, CHEN D Q. Fluorescence lifetime imaging technology and its applications in the field of biomedicine[J]. J Luminescence, 2025, 46(1): 46-59. | |
| [31] | MORAWETZ H. Studies of synthetic-polymers by nonradiative energy-transfer[J]. Science, 1988, 240(4849): 172-176. |
| [32] | QIN L L, LI L L, SHA Y, et al. Conformational transitions of polymer chains in solutions characterized by fluorescence resonance energy transfer[J]. Polymers, 2018, 10: 1007. |
| [33] | YANG S G, XIE H J, SABA H, et al. Fluorescence microscopy tracking of dyes, nanoparticles and quantum dots during growth of polymer spherulites[J]. Polymer, 2020, 191: 122246. |
| [34] | YANG S G, WEI Z Z, CSEH L, et al. Bowls, vases and goblets-the microcrockery of polymer and nanocomposite morphology revealed by two-photon optical tomography[J]. Nat Commun, 2021, 12: 5054. |
| [35] | XU J, DING L, CHEN J, et al. Sensitive characterization of the influence of substrate interfaces on supported thin films[J]. Macromolecules, 2014, 47(18): 6365-6372. |
| [36] | ELLISON C J, TORKELSON J M. The distribution of glass-transition temperatures in nanoscopically confined glass formers[J]. Nat Mater, 2003, 2(10): 695-700. |
| [37] | PRIESTLEY R D, ELLISON C J, BROADBELT L J, et al. Structural relaxation of polymer glasses at surfaces, interfaces and in between[J]. Science, 2005, 309(5733): 456-459. |
| [38] | BAGLAY R R, ROTH C B. Local glass transition temperature Tg(z) of polystyrene next to different polymers: hard vs. soft confinement[J]. J Chem Phys, 2017, 146: 203307. |
| [39] | KIM S, ROTH C B, TORKELSON J M. Effect of nanoscale confinement on the glass transition temperature of free-standing polymer films: novel, self-referencing fluorescence method[J]. J Polym Sci B Polym Phys, 2008, 46(24): 2754-2764. |
| [40] | RITTIGSTEIN P, TORKELSON J M. Polymer-nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging[J]. J Polym Sci B Polym Phys, 2006, 44(20): 2935-2943. |
| [41] | KIM S, TORKELSON J M. Distribution of glass transition temperatures in free-standing, nanoconfined polystyrene films: a test of de gennes' sliding motion mechanism[J]. Macromolecules, 2011, 44(11): 4546-4553. |
| [42] | ELLISON C J, KIM S D, HALL D B, et al. Confinement and processing effects on glass transition temperature and physical aging in ultrathin polymer films: novel fluorescence measurements[J]. Eur Phys J E, 2002, 8(2): 155-166. |
| [43] | CHOI W, LEE W, YU Y J, et al. Comparison of glass transition dynamics between fluorophore-labeled and -doped flexible poly(vinyl chloride) plasticized by ultra-small branched star poly(ε-caprolactone)[J]. Polymer, 2021, 234(8): 124240. |
| [44] | BAO S P, WU Q H, QIN W, et al. Sensitive and reliable detection of glass transition of polymers by fluorescent probes based on AIE luminogens[J]. Polym Chem, 2015, 6(18): 3537-3542. |
| [45] | 刘英军, 朱玉梅, 王宇, 等. 聚苯乙烯分子链构象与其薄膜的玻璃化转变行为[J]. 中国科学(化学), 2014, 44(12): 1986-1995. |
| LIU Y J, ZHU Y M, WANG Y, et al. Investigation on polystyrene chain conformation and glass transition behavior of its thin film[J]. Sci China: Chem, 2014, 44(12): 1986-1995. | |
| [46] | 赵江, 郑中礼. 一种聚合物薄膜的玻璃化转变温度的测定方法: 中国, 201010286357.2[P]. 2011-02-09. |
| ZHAO J, ZHENG Z L. A method for determining the glass transition temperature of a polymer film: CN, 201010286357.2[P]. 2011-02-09. | |
| [47] | 马会民. 光学探针与传感分析[M]. 北京: 化学工业出版社, 2020. |
| MA H M. Optical probes and sensing analysis[M]. Beijing: Chemical Industry Press, 2020. | |
| [48] | BORST J W, VISSER A. Fluorescence lifetime imaging microscopy in life sciences[J]. Meas Sci Technol, 2010, 21(10): 102002. |
| [49] | NISHIJIMA Y. Fluorescence methods in polymer science[J]. J Polym Sci, C Polym Symp, 1970, 31(1): 353-373. |
| [50] | TANAKA K, TATEISHI Y, OKADA Y, et al. Interfacial mobility of polymers on inorganic solids[J]. J Phys Chem B, 2009, 113(14): 4571-4577. |
| [51] | SHIMOMURA S, INUTSUKA M, TAJIMA K, et al. Stabilization of polystyrene thin films by introduction of a functional end group[J]. Polym J, 2016, 48(9): 949-953. |
| [52] | MUNDRA M K, ELLISON C J, RITTIGSTEIN P, et al. Fluorescence studies of confinement in polymer films and nanocomposites: glass transition temperature, plasticizer effects, and sensitivity to stress relaxation and local polarity[J]. Eur Phys J Spec Top, 2007, 141: 143-151. |
| [53] | URBAN F K. Ellipsometer measurement of thickness and optical-properties of thin absorbing films[J]. Appl Surf Sci, 1988, 33/34: 934-941. |
| [54] | GESANG T, FANTER D, HOPER R, et al. Comparative film thickness determination by atomic-force microscopy and ellipsometry for ultrathin polymer-films[J]. Surf Interface Anal, 1995, 23(12): 797-808. |
| [55] | PARK J, CHO Y J, CHEGAL W, et al. A review of thin-film thickness measurements using optical methods[J]. Int J Precis Eng Manuf, 2024, 25(8): 1725-1737. |
| [56] | CHEN X, LV C Z, LI Y H, et al. Precise characterization of the sequence distribution of poly(vinyl butyral) (PVB) by 2D-NMR and isotope enrichment[J]. Macromolecules, 2023, 56(8): 3036-3049. |
| [57] | KULKARNI B, QUTUB S, KHASHAB N M, et al. Rhodamine B-conjugated fluorescent block copolymer micelles for efficient chlorambucil delivery and intracellular imaging[J]. Acs Omega, 2023, 8(25): 22698-22707. |
| [58] | RAO H J, QI W, SU R X, et al. Mechanistic and conformational studies on the interaction of human serum albumin with rhodamine B by NMR, spectroscopic and molecular modeling methods[J]. J Mol Liq, 2020, 316: 113889. |
| [59] | LUAN W W, XU J M, ZENG Z X, et al. Kinetics of polyvinyl butyral (PVB) synthesis reaction catalyzed by deep eutectic solvent[J]. Can J Chem Eng, 2023, 101(10): 5903-5916. |
| [60] | GUPTA S, SEETHAMRAJU S, RAMAMURTHY P C, et al. Polyvinylbutyral based hybrid organic/inorganic films as a moisture barrier material[J]. Ind Eng Chem Res, 2013, 52(12): 4383-4394. |
| [1] | 高建召, 李东风, 孟祥胜, 王震. 含侧链苯炔基的热固性聚酰亚胺薄膜[J]. 应用化学, 2008, 25(12): 1413-1416. |
| [2] | 朱军峰, 张光华, 李俊国. 高取代度玉米醋酸酯淀粉的制备与表征[J]. 应用化学, 2006, 23(9): 1010-1013. |
| [3] | 高富堂, 张晓镭, 冯见艳, 王兆闫. 羟基硅油改性丙烯酸树脂的合成及其性能[J]. 应用化学, 2006, 23(7): 790-793. |
| [4] | 赵敏, 高俊刚, 李钢, 姚子华. 邻甲酚醛环氧树脂/聚氨酯互穿聚合物网络的形态与性能[J]. 应用化学, 2005, 22(5): 538-542. |
| [5] | 徐卫兵, 鲍素萍, 聂康明, 何平笙. 二亚乙基三胺固化环氧树脂/蒙脱土纳米复合材料的研究[J]. 应用化学, 2001, 18(6): 469-472. |
| [6] | 冯绪胜, 康诗钊, 孟克非, 穆劲. 二氧化钛超薄膜的组装[J]. 应用化学, 1998, 0(1): 74-76. |
| [7] | 李滨耀, 庄国庆, 李刚, 李红云, 张延, 陈天禄. 酞侧基聚芳醚砜和聚芳醚酮的相容性[J]. 应用化学, 1993, 0(3): 116-117. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||