应用化学 ›› 2025, Vol. 42 ›› Issue (10): 1307-1322.DOI: 10.19894/j.issn.1000-0518.250153
• 综合评述 •
收稿日期:2025-06-18
接受日期:2025-08-20
出版日期:2025-10-01
发布日期:2025-10-29
通讯作者:
王林,徐琳
基金资助:
Qi HAN1, Lin WANG1(
), Lin XU2(
)
Received:2025-06-18
Accepted:2025-08-20
Published:2025-10-01
Online:2025-10-29
Contact:
Lin WANG,Lin XU
About author:linxu@jlu.edu.cnSupported by:摘要:
口腔健康不仅关系到个体生活质量,更与全身多系统疾病的发生与发展密切相关。口腔呼出气体中的挥发性硫化物(Volatile sulfur compounds,VSCs),如硫化氢、甲硫醇和二甲基硫等,作为多类口腔疾病的重要代谢标志物具有明确的临床监测价值。气体传感技术因其灵敏、便携和易集成等优势,为实现非侵入式实时口腔健康监测提供了新的研究路径。近年来,针对VSCs气体低浓度、高波动性及湿度干扰显著的特性,相关气体传感材料与器件研究持续发展。本文围绕口腔VSCs的检测需求,简要回顾了近年来多类典型气体传感材料的研究进展,并分析结构性能与响应关系,同时结合部分已实现初步应用的柔性微型传感器件,探讨其在复杂口腔环境下的响应特性与发展潜力,旨在为口腔健康相关VSCs气体传感器的材料设计与器件集成提供参考。
中图分类号:
韩琪, 王林, 徐琳. 面向口腔健康的挥发性硫化物气体传感材料研究进展[J]. 应用化学, 2025, 42(10): 1307-1322.
Qi HAN, Lin WANG, Lin XU. Research Progress of Volatile Sulfur Compounds Gas Sensing Materials for Oral Health[J]. Chinese Journal of Applied Chemistry, 2025, 42(10): 1307-1322.
图1 MOS: (A) n型MOS传感器对还原性气体的响应机制[45]; (B) MoSe2转化为MoO3 MPNFs的原位氧化和晶胞收缩示意图[49]; (C) MoO3 MPNFs在不同湿度下对1 mg/L H2S的响应值[49]; (D) In2O3@MoS2-2异质结构的制备过程[52]; (E) 增强Au/In2O3传感性能的几种SAM机制[53]
Fig.1 MOS: (A) Mechanism of sensor response to n-type MOS with reducing gas[45]; (B) Schematic diagram of in-situ oxidation and crystal cell shrinkage[49]; (C) Response value of MoO3 MPNFs to 1 mg/L H2S gas under different humidity[49]; (D) Preparation process of In2O3@MoS2-2 heterostructure[52]; (E) SAM mechanisms for the enhanced sensing performance of Au/In2O3[53]
图3 MOFs: (A) 原始ZnO和ZIF-8/ZnO纳米棒传感器的示意图[63]; (B) 2种传感器在25 ℃下对H2S的响应曲线(1~10 mg/L)[63]; (C) Co3O4/β-CoMoO4空心纳米笼的合成工艺和ZIF-67的框架结构[64]; (D) 传感器对H2S的响应曲线(0.01~20 mg/L)[64]; (E) 传感器对10 mg/L H2S的瞬时电阻变化[64]
Fig.3 MOFs: (A) Schematic of raw ZnO and ZIF-8/ZnO nanorod sensors[63]; (B) Response curves of both sensors to H2S at 25 ℃ (1~10 mg/L)[63]; (C) Synthetic process of Co3O4/β-CoMoO4 hollow nanocages and framework structure of ZIF-67[64]; (D) Response curve of the sensor to H2S (0.01~20 mg/L)[64]; (E) Instantaneous resistance change of the sensor upon exposure to 10 mg/L H2S [64]
图4 碳纳米材料: (A)单层石墨烯与双层堆叠石墨烯结构[67]; (B) rGO结构[71]; (C) SWCNTs和MWCNTs结构[74]; (D)通过自下而上和自上而下的方法制备CQDs的策略[77]
Fig.4 Carbon nanomaterials: (A) Structures of graphene single layer and stacked bilayer[67]; (B) Structure of rGO[71]; (C) Structures of SWCNTs and MWCNTs[74]; (D) Preparation strategies of CQDs by bottom-up and top-down methods[77]
图5 新型功能材料: (A) Mo2Ga2C MAX和MXene的结构示意图[81]; (B)基于MoS2和MoSe2的NO2气体传感器的气体传感机制示意图[92]; (C) COFs的拓扑结构与生长示意图[98]; (D) 三维网状钙钛矿结构的晶体结构图[101]
Fig.5 Novel functional materials: (A) Schematic demonstrating Mo2Ga2C MAX and MXene structures[81]; (B) Schematics of gas sensing mechanism of MoS2 and MoSe2 based NO2 gas sensor[92]; (C) The topology and growth of the COFs[98]; (D) Crystal structure diagram of 3D mesh perovskite structure[101]
图6 VSCs传感器件集成与应用: (A) Ni3(HITP)2/NUS-8传感器功能模块[60]; (B) 柔性器件的光学照片[60]; (C)印刷图案光学照片[60]; (D) 柔性PP/G/PANI混合传感器制备过程的示意图[70]; (E) PP/G/PANI传感器对呼气中H2S的检测[70]; (F) FMTNA制备示意图与在口罩上应用芯片作为牙周炎诊断可穿戴设备的图示[108]; (G) PVA/Bn/Pb复合水凝胶传感器集成云端设备实现呼气检测[110]
Fig. 6 Integration and application of sensor devices for the detection of VSCs: (A) Functional module of the Ni3(HITP)2/NUS-8 sensor[60]; (B) Optical photo of the flexible device[60]; (C) Optical photos of patterns printed[60]; (D) Schematic illustration of the flexible PP/G/PANI hybrid sensor preparation process[70]; (E) Detection of H2S in exhaled breath by the PP/G/PANI sensor[70]; (F) Schematic illustration of the preparation of FMTNA and illustration of chip application on a mask as a wearable device for periodontitis diagnosis[108]; (G) PVA/Bn/Pb composite hydrogel sensor integrated with a cloud-based device for breath detection[110]
| [1] | GIANOS E, JACKSON E A, TEJPAL A, et al. Oral health and atherosclerotic cardiovascular disease: a review[J]. Am J Prevent Cardiol, 2021, 7: 100179. |
| [2] | KELLY N, BLACKWOOD B, CREDLAND N, et al. Oral health care in adult intensive care units: a national point prevalence study[J]. Nurs Crit Care, 2023, 28(5): 773-780. |
| [3] | LIPSKY M S, SINGH T, ZAKERI G, et al. Oral health and older adults: a narrative review[J]. Dent J, 2024, 12(2): 30. |
| [4] | MUÑÓZ-MEDEL M, PINTO M P, GORALSKY L, et al. Porphyromonas gingivalis, a bridge between oral health and immune evasion in gastric cancer[J]. Front Oncol, 2024, 14: 1403089. |
| [5] | SEZER B, KAYA R, KODAMAN DOKUMACIĞIL N, et al. Assessment of the oral health status of children with chronic kidney disease[J]. Pediatr Nephrol, 2023, 38(1): 269-277. |
| [6] | SKALLEVOLD H E, ROKAYA N, WONGSIRICHAT N, et al. Importance of oral health in mental health disorders: an updated review[J]. J Oral Biol Craniofac Res, 2023, 13(5): 544-552. |
| [7] | AHONEN H, PAKPOUR A, NORDERYD O, et al. Applying world dental federation theoretical framework for oral health in a general population[J]. Int Dent J, 2022, 72(4): 536-544. |
| [8] | KANDASAMY G, ALMAGHASLAH D, VASUDEVAN R, et al. Assessment of oral health literacy and oral health-related quality of life in Saudi university students: a cross-sectional study[J]. J Oral Rehabil, 2023, 50(9): 852-859. |
| [9] | YIN N, LI W, ZHOU H, et al. Associations among self-rated oral health, subjective oral conditions, oral health behaviours, and oral health related quality of life (OHRQoL)[J]. Oral Health Prev Dent, 2023, 21: 25-32. |
| [10] | HENG W, YIN S, CHEN Y, et al. Exhaled breath analysis: from laboratory test to wearable sensing[J]. IEEE Rev Biomed Eng, 2025, 18: 50-73. |
| [11] | ZHANG F, DING Q, SHI F, et al. Bio-sniffers for biomarkers of oral diseases in exhaled breath: state of art and future trends[J]. Coord Chem Rev, 2024, 501: 215574. |
| [12] | GUAN G, TJHANG V, SUN S, et al. Halitosis in oral lichen planus patients[J]. J Breath Res, 2025, 19(1): 016007. |
| [13] | KWON I J, JUNG T Y, SON Y, et al. Detection of volatile sulfur compounds (VSCs) in exhaled breath as a potential diagnostic method for oral squamous cell carcinoma[J]. BMC Oral Health, 2022, 22(1): 268. |
| [14] | LEE Y H, SHIN S I, HONG J Y. Investigation of volatile sulfur compound level and halitosis in patients with gingivitis and periodontitis[J]. Sci Rep, 2023, 13(1): 13175. |
| [15] | SHETTY S S, JAYARAMA A, KARUNASAGAR I, et al. A review on chemi-resistive human exhaled breath biosensors for early diagnosis of disease[J]. Mater Today Proc, 2022, 55: 122-126. |
| [16] | MA P, LI J, CHEN Y, et al. Non-invasive exhaled breath diagnostic and monitoring technologies[J]. Microw Opt Technol Lett, 2023, 65(5): 1475-1488. |
| [17] | ROSLUND K, LEHTO M, PUSSINEN P, et al. Identifying volatile in vitro biomarkers for oral bacteria with proton-transfer-reaction mass spectrometry and gas chromatography-mass spectrometry[J]. Sci Rep, 2021, 11(1): 16897. |
| [18] | ZHANG X, FRANKEVICH V, DING J, et al. Direct mass spectrometry analysis of exhaled human breath in real-time[J]. Mass Spectrom Rev, 2025, 44(1): 43-61. |
| [19] | ALLSOP T, NEAL R. A review: application and implementation of optic fiber sensors for gas detection[J]. Sensors, 2021, 21(20): 6755. |
| [20] | LI P, LI J, SONG S, et al. Recent advances in optical gas sensors for carbon dioxide detection[J]. Measurement, 2025, 239: 115445. |
| [21] | LIM J, SHIM J, KIM I, et al. Ultrasensitive mid-infrared optical gas sensor based on germanium-on-insulator photonic circuits with limit-of-detection at sub-ppm level[J]. ACS Photonics, 2024, 11(10): 4268-4278. |
| [22] | ZHENG Y, ZOU X, HE S. Gas detection using cavity-enhanced Raman spectroscopy with a bidirectional multi-pass cell and polarization beam-splitting optical path[J]. Appl Phys B, 2024, 130(8): 144. |
| [23] | LEE J M, LEE Y, DEVARAJ V, et al. Investigation of colorimetric biosensor array based on programmable surface chemistry of M13 bacteriophage towards artificial nose for volatile organic compound detection: from basic properties of the biosensor to practical application[J]. Biosens Bioelectron, 2021, 188: 113339. |
| [24] | WASILEWSKI T, NEUBAUER D, KAMYSZ W, et al. Recent progress in the development of peptide-based gas biosensors for environmental monitoring[J]. Case Stud Chem Environ Eng, 2022, 5: 100197. |
| [25] | SONG G, ZHANG Z, FAUCONNIER M L, et al. Bimodal single-atom iron nanozyme biosensor for volatile amine and food freshness detection[J]. Nano Today, 2023, 53: 102025. |
| [26] | BAEK J W, SHIN E, LEE J, et al. Present and future of emerging catalysts in gas sensors for breath analysis[J]. ACS Sens, 2025, 10(1): 33-53. |
| [27] | HARUN-OR-RASHID M, MIRZAEI S, NASIRI N. Nanomaterial innovations and machine learning in gas sensing technologies for real-time health diagnostics[J]. ACS Sens, 2025, 10(3): 1620-1640. |
| [28] | LI Y, TANG H, LIU Y, et al. Oral wearable sensors: health management based on the oral cavity[J]. Biosens Bioelectron X, 2022, 10: 100135. |
| [29] | ENOMOTO S, ZAITSU T, ARITOMI R, et al. Accessible halitosis diagnosis: validating the accuracy of novel AI-based compact VSC measuring instrument[J]. J Breath Res, 2025, 19(2): 026004. |
| [30] | SCLAUSER J M B, VIANA K S S, DE ARRUDA J A A, et al. Volatile sulfur compounds and salivary parameters in patients undergoing head and neck cancer treatment: a preliminary study[J]. J Stomatol Oral Maxillofac Surg, 2025, 126(5): 102158. |
| [31] | IATROPOULOS A, PANIS V, MELA E, et al. Changes of volatile sulphur compounds during therapy of a case series of patients with chronic periodontitis and halitosis[J]. J Clin Periodontol, 2016, 43(4): 359-365. |
| [32] | WÅLER S M. On the transformation of sulfur-containing amino acids and peptides to volatile sulfur compounds (VSC) in the human mouth[J]. Eur J Oral Sci, 1997, 105(5): 534-537. |
| [33] | LEE Y H, SHIN S I, HONG J Y. Investigation of volatile sulfur compound level and halitosis in patients with gingivitis and periodontitis[J]. Sci Rep, 2023, 13(1): 13175. |
| [34] | PYSANENKO A, ŠPANĚL P, SMITH D. A study of sulfur-containing compounds in mouth- and nose-exhaled breath and in the oral cavity using selected ion flow tube mass spectrometry[J]. J Breath Res, 2008, 2(4): 046004. |
| [35] | STEPHEN A S, DHADWAL N, NAGALA V, et al. Interdental and subgingival microbiota may affect the tongue microbial ecology and oral malodour in health, gingivitis and periodontitis[J]. J Periodont Res, 2021, 56(6): 1174-1184. |
| [36] | WU D D, NGOWI E E, ZHAI Y K, et al. Role of hydrogen sulfide in oral disease[J]. Oxid Med Cell Longev, 2022, 2022(1): 1886277. |
| [37] | GROOTVELD K L, RUIZ-RODADO V, GROOTVELD M. Targeted chemometrics investigations of source-, age- and gender-dependencies of oral cavity malodorous volatile sulphur compounds[J]. Data, 2021, 6(4): 36. |
| [38] | AMANN A, COSTELLO B D L, MIEKISCH W, et al. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva[J]. J Breath Res, 2014, 8(3): 034001. |
| [39] | TURLYBEKULY A, SHYNYBEKOV Y, SOLTABAYEV B, et al. The cross-sensitivity of chemiresistive gas sensors: nature, methods, and peculiarities: a systematic review[J]. ACS Sens, 2024, 9(12): 6358-6371. |
| [40] | KIM C, KANG M S, RAJA I S, et al. Current issues and perspectives in nanosensors-based artificial olfactory systems for breath diagnostics and environmental exposure monitoring[J]. TrAC Trends Anal Chem, 2024, 174: 117656. |
| [41] | RATH R J, FARAJIKHAH S, OVEISSI F, et al. Chemiresistive sensor arrays for gas/volatile organic compounds monitoring: a review[J]. Adv Eng Mater, 2023, 25(3): 2200830. |
| [42] | SMALL L J, VORNHOLT S M, PERCIVAL S J, et al. Impedance-based detection of NO2 using Ni-MOF-74: influence of competitive gas adsorption[J]. ACS Appl Mater Interfaces, 2023, 15(31): 37675-37686. |
| [43] | OU L X, LIU M Y, ZHU L Y, et al. Recent progress on flexible room-temperature gas sensors based on metal oxide semiconductor[J]. Nano Micro Lett, 2022, 14(1): 206. |
| [44] | YANG B, MYUNG N V, TRAN T T. 1D metal oxide semiconductor materials for chemiresistive gas sensors: a review[J]. Adv Electron Mater, 2021, 7(9): 2100271. |
| [45] | NADARGI D Y, UMAR A, NADARGI J D, et al. Gas sensors and factors influencing sensing mechanism with a special focus on MOS sensors[J]. J Mater Sci, 2023, 58(2): 559-582. |
| [46] | BAE G, KIM M, LEE A, et al. Nanometric lamination of zinc oxide nanofilms with gold nanoparticles for self-perceived periodontal disease sensors[J]. Compos Part B Eng, 2022, 230: 109490. |
| [47] | SHAIK R, KAMPARA R K, KUMAR A, et al. Metal oxide nanofibers based chemiresistive H2S gas sensors[J]. Coord Chem Rev, 2022, 471: 214752. |
| [48] | ZHOU T, ZHANG T. Recent progress of nanostructured sensing materials from 0D to 3D: overview of structure-property-application relationship for gas sensors[J]. Small Methods, 2021, 5(9): 2100515. |
| [49] | LI X, YANG H, HU X, et al. Exposed Mo atoms induced by micropores enhanced H2S sensing of MoO3 nanoflowers[J]. J Hazard Mater, 2022, 429: 128270. |
| [50] | LIU L, WANG Y, LIU Y, et al. Heteronanostructural metal oxide-based gas microsensors[J]. Microsystems Nanoeng, 2022, 8(1): 85. |
| [51] | GUO M, WANG B, BIAN H, et al. Low-temperature ppm-level H2S flexible gas sensor on the basis of Ag-modified ZnO[J]. Mater Sci Semicond Process, 2025, 185: 108944. |
| [52] | HUO Y, QIU L, WANG T, et al. P-N heterojunction formation: metal sulfide@metal oxide chemiresistor for ppb H2S detection from exhaled breath and food spoilage at flexible room temperature[J]. ACS Sens, 2024, 9(6): 3433-3443. |
| [53] | ZHANG F, SUN J, SHI F, et al. Nanometric surface-selective regulation of Au/In2O3 nanofibers as an exhaled H2S chemiresistor for periodontitis diagnosis[J]. ACS Sens, 2022, 7(11): 3530-3539. |
| [54] | JO Y M, JO Y K, LEE J H, et al. MOF-based chemiresistive gas sensors: toward new functionalities[J]. Adv Mater, 2023, 35(43): 2206842. |
| [55] | CHEN R, CHAI M, HOU J. Metal-organic framework-based mixed matrix membranes for gas separation: recent advances and opportunities[J]. Carbon Capture Sci Technol, 2023, 8: 100130. |
| [56] | CAI W, WANG J, CHU C, et al. Metal-organic framework-based stimuli-responsive systems for drug delivery[J]. Adv Sci, 2019, 6(1): 1801526. |
| [57] | CHEN L, XU Q. Metal-organic framework composites for catalysis[J]. Matter, 2019, 1(1): 57-89. |
| [58] | JO Y M, JO Y K, LEE J H, et al. MOF-based chemiresistive gas sensors: toward new functionalities[J]. Adv Mater, 2023, 35(43): 2206842. |
| [59] | LI L, ZHANG S, LU Y, et al. Highly selective and sensitive detection of volatile sulfur compounds by ionically conductive metal-organic frameworks[J]. Adv Mater, 2021, 33(52): 2104120. |
| [60] | WU X, TIAN X, ZHANG W, et al. Solution-processable MOF-on-MOF system constructed via template-assisted growth for ultratrace H2S detection[J]. Angew Chem Int Ed, 2024, 63(49): e202410411. |
| [61] | MORITA M, YONEZU A, KUSAKA S, et al. Direct observation of dimethyl sulfide trapped by MOF proving efficient removal of sulfur impurities[J]. RSC Adv, 2020, 10(8): 4710-4714. |
| [62] | ZHANG H Y, YANG C, GENG Q, et al. Adsorption of hydrogen sulfide by amine-functionalized metal organic framework (MOF-199): an experimental and simulation study[J]. Appl Surf Sci, 2019, 497: 143815. |
| [63] | WU X, XIONG S, GONG Y, et al. MOF-SMO hybrids as a H2S sensor with superior sensitivity and selectivity[J]. Sens Actuators B: Chem, 2019, 292: 32-39. |
| [64] | CAO S, SONG Z, BING Y, et al. Metal-organic-framework derived Co-Mo multimetal oxide semiconductors: selective trace-level hydrogen sulfide detection[J]. ACS Sens, 2024, 9(6): 2979-2988. |
| [65] | DARIYAL P, SHARMA S, CHAUHAN G S, et al. Recent trends in gas sensing via carbon nanomaterials: outlook and challenges[J]. Nanoscale Adv, 2021, 3(23): 6514-6544. |
| [66] | SPERANZA G. Carbon nanomaterials: synthesis, functionalization and sensing applications[J]. Nanomaterials, 2021, 11(4): 967. |
| [67] | ZHAN D, YAN J, LAI L, et al. Engineering the electronic structure of graphene[J]. Adv Mater, 2012, 24(30): 4055-4069. |
| [68] | GHOSH R, ASLAM M, KALITA H. Graphene derivatives for chemiresistive gas sensors: a review[J]. Mater Today Commun, 2022, 30: 103182. |
| [69] | YUAN W, SHI G. Graphene-based gas sensors[J]. J Mater Chem A, 2013, 1(35): 10078-10091. |
| [70] | WU G, DU H, LEE D, et al. Polyaniline/graphene-functionalized flexible waste mask sensors for ammonia and volatile sulfur compound monitoring[J]. ACS Appl Mater Interfaces, 2022, 14(50): 56056-56064. |
| [71] | AHMED A, SINGH A, YOUNG S J, et al. Synthesis techniques and advances in sensing applications of reduced graphene oxide (rGO) composites: a review[J]. Compos Part A Appl Sci Manuf, 2023, 165: 107373. |
| [72] | HINGANGAVKAR G M, KADAM S A, MA Y R, et al. On the behavior of MoS2-rGO nanocomposites for chemiresistive H2S detection at room temperature[J]. Sens Actuators B: Chem, 2024, 399: 134843. |
| [73] | RAJABZADEH S, ROUNAGHI G H, ARBAB-ZAVAR M H, et al. Development of a dimethyl disulfide electrochemical sensor based on electrodeposited reduced graphene oxide-chitosan modified glassy carbon electrode[J]. Electrochim Acta, 2014, 135: 543-549. |
| [74] | VIDU R, RAHMAN M, MAHMOUDI M, et al. Nanostructures: a platform for brain repair and augmentation[J]. Front Syst Neurosci, 2014, 8: 91. |
| [75] | FERRIER D C, HONEYCHURCH K C. Carbon nanotube (CNT)-based biosensors[J]. Biosensors, 2021, 11(12): 486. |
| [76] | DILONARDO E, PENZA M, ALVISI M, et al. Electrophoretic deposition of Au NPs on MWCNT-based gas sensor for tailored gas detection with enhanced sensing properties[J]. Sens Actuators B: Chem, 2016, 223: 417-428. |
| [77] | HASSAN A H H E, SOYLAK M. Exploring the potential of carbon quantum dots (CQDs) as an advanced nanomaterial for effective sensing and extraction of toxic pollutants[J]. TrAC Trends Anal Chem, 2024, 180: 117939. |
| [78] | THOTA C, MODIGUNTA J K R, REDDEPPA M, et al. Light stimulated room-temperature H2S gas sensing ability of Cl-doped carbon quantum dots supported Ag nanoparticles[J]. Carbon, 2022, 196: 337-346. |
| [79] | LIM K R G, SHEKHIREV M, WYATT B C, et al. Fundamentals of MXene synthesis[J]. Nat Synth, 2022, 1(8): 601-614. |
| [80] | SINHA A, DHANJA I, ZHAO H, et al. MXene: an emerging material for sensing and biosensing[J]. TrAC Trends Anal Chem, 2018, 105: 424-435. |
| [81] | QIAN L, RAHMATI F, LI F, et al. Recent advances in 2D MXene-based heterostructures for gas sensing: mechanisms and applications in environmental and biomedical fields[J]. Nanoscale, 2025, 17(15): 8975-8998. |
| [82] | HOSSEINI-SHOKOUH S H, ZHOU J, BERGER E, et al. Highly selective H2S gas sensor based on Ti3C2Tx MXene-organic composites[J]. ACS Appl Mater Interfaces, 2023, 15(5): 7063-7073. |
| [83] | RHYU H, JANG S, SHIN J H, et al. Multiarray gas sensors using ternary combined Ti3C2Tx MXene-based nanocomposites[J]. ACS Appl Mater Interfaces, 2024, 16(22): 28808-28817. |
| [84] | BHARDWAJ R, HAZRA A. MXene-based gas sensors[J]. J Mater Chem C, 2021, 9(44): 15735-15754. |
| [85] | TANG L, WANG H, DU Z, et al. 3D porous MXene nanosheet/SnO2 nanoparticle composites for H2S gas sensing[J]. ACS Appl Nano Mater, 2024, 7(5): 5442-5453. |
| [86] | DING J, WANG Q, LIU X, et al. Ultrasensitive detection of hazardous gas at room temperature enabled by MOF@MXene 0D-2D heterostructure[J]. J Hazard Mater, 2024, 480: 136261. |
| [87] | SHIN J H, JO S H, RHYU H, et al. High-performance H2S gas sensor utilizing MXene/MoS2 heterostructure synthesized via the Langmuir-Blodgett technique and chemical vapor deposition[J]. RSC Adv, 2024, 14(51): 37781-37787. |
| [88] | JIA Z, ZHANG J, JI Z, et al. 2D/0D heterojunction fluorescent probe with schottky barrier based on Ti3C2Tx MXene loaded graphene quantum dots for detection of H2S during food spoilage[J]. Adv Funct Mater, 2025, 35(1): 2412082. |
| [89] | KUMAR A, MIRZAEI A, LEE M H, et al. Strategic review of gas sensing enhancement ways of 2D tungsten disulfide/selenide-based chemiresistive sensors: decoration and composite[J]. J Mater Chem A, 2024, 12(7): 3771-3806. |
| [90] | MIRZAEI A, KIM J Y, KIM H W, et al. Resistive gas sensors based on 2D TMDs and MXenes[J]. Acc Chem Res, 2024, 57(16): 2395-2413. |
| [91] | KIM Y, SOHN I, SHIN D, et al. Recent advances in functionalization and hybridization of two-dimensional transition metal dichalcogenide for gas sensor[J]. Adv Eng Mater, 2024, 26(1): 2301063. |
| [92] | KUMAR S, MIRZAEI A, KUMAR A, et al. Nanoparticles anchored strategy to develop 2D MoS2 and MoSe2 based room temperature chemiresistive gas sensors[J]. Coord Chem Rev, 2024, 503: 215657. |
| [93] | HINGANGAVKAR G M, KADAM S A, MA Y R, et al. Highly selective and sensitive MoS2 nano-sensor for H2S detection[J]. J Alloys Compd, 2023, 941: 168849. |
| [94] | ZHENG W, LIU X, XIE J, et al. Emerging van der Waals junctions based on TMDs materials for advanced gas sensors[J]. Coord Chem Rev, 2021, 447: 214151. |
| [95] | SADAF S, ZHANG H, AKHTAR A. MoS2-NiO nanocomposite for H2S sensing at room temperature[J]. RSC Adv, 2023, 13(41): 28564-28575. |
| [96] | SINGH S, DEB J, SINGH J V, et al. Highly selective ethyl mercaptan sensing using a MoSe2/SnO2 composite at room temperature[J]. ACS Appl Mater Interfaces, 2022, 14(20): 23916-23927. |
| [97] | SADAF S, ZHANG H, CHEN D, et al. Highly sensitive room temperature H2S gas sensor based on the nanocomposite of MoS2-ZnCo2O4[J]. ACS Omega, 2023, 8(49): 47023-47033. |
| [98] | YUE Y, JI D, LIU Y, et al. Chemical sensors based on covalent organic frameworks[J]. Chem Eur J, 2024, 30(3): e202302474. |
| [99] | MEI A, YANG Z, ZHOU M, et al. Opportunity and challenge of emerging COFs in chemiresistive sensing for gas and humidity[J]. Anal Sens, 2024, 4(3): e202300078. |
| [100] | NIZAMIDIN P, DU X, GAO H, et al. A nanoporous covalent organic framework film-based optical waveguide sensor for H2S gas detection[J]. ACS Appl Nano Mater, 2025, 8(8): 3876-3886. |
| [101] | WEI C, GUO Z, WANG H, et al. Recent progress of gas sensors based on perovskites[J]. Mater Horizons, 2025, 12(2): 317-342. |
| [102] | BUI T H, SHIN J H. Perovskite materials for sensing applications: recent advances and challenges[J]. Microchem J, 2023, 191: 108924. |
| [103] | SHAO X, SHI Y, WANG H, et al. A review on advances in the gas-sensitive properties of perovskite materials[J]. J Electron Mater, 2023, 52(9): 5785-5809. |
| [104] | ZHOU K, YANG H, DU Z, et al. Ultrahigh selectivity H2S gas sensor based on CsPbBr3 perovskites via Pb—S bonding interaction[J]. ACS Sens, 2025, 10(1): 517-525. |
| [105] | CASANOVA-CHAFER J, GARCIA-ABOAL R, ATIENZAR P, et al. Unraveling the gas-sensing mechanisms of lead-free perovskites supported on graphene[J]. ACS Sens, 2022, 7(12): 3753-3763. |
| [106] | MAO M, ZU Y, ZHANG Y, et al. Photoelectrochemical sensor for H2S based on a lead-free perovskite/metal-organic framework composite[J]. Anal Chem, 2024, 96(10): 4290-4298. |
| [107] | HUANG S, SHAN H, XU Y, et al. Preparation of CsPbBr3@Fe2O3 heterojunction nanocrystals for ppb-level H2S sensing[J]. Ceram Int, 2024, 50(14): 25607-25612. |
| [108] | DU Y, ZHANG H, ZHENG J, et al. Integrating vacancies and defect levels in heterojunctions to synergistically enhance the performance of H2S chemiresistors for periodontitis diagnosis[J]. ACS Sens, 2025, 10(4): 3072-3080. |
| [109] | MENG X, WANG J, YANG Z, et al. Construction of smartphone-adapted signal visualization platform for dual-mode detection of H2S based on integrated metal-organic framework nanoprobes[J]. Talanta, 2024, 270: 125517. |
| [110] | CHEN Y, ZHANG D, WANG Z, et al. Pb2+ transfer-enabled recoverable hydrogel-based H2S colorimetric sensing with assistance of multimodal deep learning for multifunctional applications[J]. Adv Funct Mater, 2024, 34(49): 2409017. |
| [1] | 唐连波, 付大友, 陈琦, 奉阳润, 熊桠林, 王竹青. 碳量子点增强气液相化学发光检测二氧化碳[J]. 应用化学, 2022, 39(8): 1294-1302. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||