应用化学 ›› 2024, Vol. 41 ›› Issue (10): 1469-1480.DOI: 10.19894/j.issn.1000-0518.240111
收稿日期:
2024-04-02
接受日期:
2024-08-22
出版日期:
2024-10-01
发布日期:
2024-10-29
通讯作者:
毕研峰
基金资助:
Meng-Chun ZHU, Qi-Qi LI, Hong-Rui TIAN, Yan-Feng BI()
Received:
2024-04-02
Accepted:
2024-08-22
Published:
2024-10-01
Online:
2024-10-29
Contact:
Yan-Feng BI
About author:
biyanfeng@lnpu.edu.cnSupported by:
摘要:
采用等体积浸渍法在介孔SBA-15负载SBA-15的质量分数X% (X=10, 20, 30, 40, 50) Keggin型杂多酸H4PMo11VO40(PMoV),制备系列催化剂X%PMoV,用于室温条件下可见光光热氧化脱硫。 通过比表面积分析(BET)、傅里叶变换红外光谱仪(FT-IR)、X射线衍射仪(XRD)、透射电子显微镜(TEM)、X射线电子能谱分析仪(XPS)和紫外可见分光光度计(UV-Vis)对催化剂进行了表征。 催化剂在乙腈溶剂中的表现出了光热转换能力,且光热转化效果随活性组分负载量增加而变强。 以H2O2为氧化剂,二苯并噻吩(DBT)为例的模型油中,对催化剂光热氧化脱除硫进行了研究。 研究表明,催化剂对DBT具有光催化和光驱动热催化的协同氧化脱硫能力。 得益于活性组分PMoV在载体SBA-15孔道内的有效负载,当负载量为30%时,催化剂具有较好的循环稳定性和底物氧化产物选择性。 催化剂的光热催化脱硫策略也适用于其它噻吩类衍生物以及硫醚类化合物。 此研究为利用可见光吸收活性组分负载于分子筛,用于光驱动光催化和热催化脱硫应用提供了一种新的思路。
中图分类号:
祝梦春, 李齐齐, 田洪瑞, 毕研峰. SBA-15负载磷钼钒酸构筑高效室温光热氧化脱硫催化剂[J]. 应用化学, 2024, 41(10): 1469-1480.
Meng-Chun ZHU, Qi-Qi LI, Hong-Rui TIAN, Yan-Feng BI. SBA-15-Supported Molybdovanadophosphoric Acid Photothermal Catalysts for Efficient Oxidation Desulfurization at Room Temperature[J]. Chinese Journal of Applied Chemistry, 2024, 41(10): 1469-1480.
Catalysts | BET surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Pore size/nm |
---|---|---|---|
SBA-15 | 719 | 1.09 | 5.78 |
10%PMoV | 593 | 0.87 | 5.39 |
20%PMoV | 535 | 0.89 | 5.91 |
30%PMoV | 488 | 0.85 | 6.02 |
40%PMoV | 426 | 0.74 | 5.96 |
50%PMoV | 400 | 0.75 | 6.35 |
表1 X%PMoV催化剂的比表面积、孔体积和孔径
Table 1 BET surface area, pore volume, and pore diameter of X%PMoV catalysts
Catalysts | BET surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Pore size/nm |
---|---|---|---|
SBA-15 | 719 | 1.09 | 5.78 |
10%PMoV | 593 | 0.87 | 5.39 |
20%PMoV | 535 | 0.89 | 5.91 |
30%PMoV | 488 | 0.85 | 6.02 |
40%PMoV | 426 | 0.74 | 5.96 |
50%PMoV | 400 | 0.75 | 6.35 |
图7 样品在乙腈溶剂中的光热实验时间-温度曲线(A)和30%PMoV光热图像(B)
Fig.7 Photothermal experiment for samples time-temperature curves in CH3CN solvent (A); photothermal images of 30%PMoV (B)
图9 (A)30%PMoV催化剂不同条件下对DBT的氧化脱硫性能; (B)氧化产物DBTO2的FT-IR谱图
Fig.9 The oxidation removal of DBT performances for 30%PMoV at different conditions (A); FT-IR spectrum of oxidative product DBTO2 (B)
Num | Substrate | Time/h | Desulfurization rate/% |
---|---|---|---|
1 | 0.5 | >99 | |
2 | 0.5 | >99 | |
3 | 0.5 | >99 | |
4 | 1 | 91 | |
2 | >99 | ||
5 | 1 | 87 | |
2 | >99 | ||
6 | 1 | 78 | |
3 | >99 | ||
7 | 6 | <67 |
表2 各种硫化物与催化剂及氧化剂H2O2的脱硫效率 a
Table 2 Desulfurization efficiency of various sulfides with catalyst and oxidant H2O2a
Num | Substrate | Time/h | Desulfurization rate/% |
---|---|---|---|
1 | 0.5 | >99 | |
2 | 0.5 | >99 | |
3 | 0.5 | >99 | |
4 | 1 | 91 | |
2 | >99 | ||
5 | 1 | 87 | |
2 | >99 | ||
6 | 1 | 78 | |
3 | >99 | ||
7 | 6 | <67 |
1 | ALMETWALLY A A, BIN-JUMAH M, ALLAM A A. Ambient air pollution and its influence on human health and welfare: an overview[J]. Environ Sci Pollut Res Int, 2020, 27(20): 24815-24830. |
2 | SALEH T A. Characterization, determination and elimination technologies for sulfur from petroleum: toward cleaner fuel and a safe environment[J]. Trends Environ Anal Chem, 2020, 25: e00080. |
3 | SAHA B, VEDACHALAM S, DALAI A K. Review on recent advances in adsorptive desulfurization[J]. Fuel Process Technol, 2021, 214: 106685. |
4 | REZAEE M, FEYZI F, DEHGHANI M R. Extractive desulfurization of dibenzothiophene from normal octane using deep eutectic solvents as extracting agent[J]. J Mol Liq, 2021, 333: 115991. |
5 | CHEN S Q, ZANG M, LI L, et al. Efficient biodesulfurization of diesel oil by Gordonia sp SC-10 with highly hydrophobic cell surfaces[J]. Chem Eng J, 2021, 174: 108094. |
6 | CHOI A E S, ROCES S A, DUGOS N P, et al. A comprehensive process optimization study of the mixing assisted oxidative desulfurization of diesel oil[J]. Environ Technol Innovation, 2023, 31: 103144. |
7 | SHAFIQ I, HUSSAIN M, SHAFIQUE S, et al. Oxidative desulfurization of refinery diesel pool fractions using LaVO4 photocatalyst[J]. J Ind Eng Chem, 2021, 98: 283-288. |
8 | 商宇桐, 杨丽娜, 管景国, 等. 光催化氧化脱硫催化剂研究进展[J]. 石油化工高等学校学报, 2020, 33(2): 17-22. |
SHANG Y T, YANG L N, GUAN J G, et al. Progress in photocatalytic oxidation desulfurization catalysts[J]. J Petrochem Univ, 2020, 33(2): 17-22. | |
9 | 陈立东, 佟欢, 王旭阳, 等. Keggin结构多阴阳离子构筑高活性多酸基氧化脱硫催化剂[J]. 应用化学, 2017, 34(11): 1301-1306. |
CHEN L D, TONG H, WANG X Y, et al. Preparation of high activity oxidative desulfurization catalyst with polycation and heteropolyanion keggin structure[J]. Chin J Appl Chem, 2017, 34(11): 1301-1306. | |
10 | WANG C W, LIU Z, GAO R, et al. Deep oxidative desulfurization of model fuels catalyzed by polyoxometalates anchored on amine-functionalized ceria doped MCM-41 with molecular oxygen[J]. New J Chem, 2020, 44(16): 6251-6260. |
11 | YASEEN M, KHATTAK S, ULLAH S, et al. Oxidative desulfurization of model and real petroleum distillates using Cu or Ni impregnated banana peels derived activated carbon-NaClO catalyst-oxidant system[J]. Chem Eng Res Des, 2022, 179: 107-118. |
12 | DOU S Y, WANG R. High-efficient utilization of gaseous oxidants in oxidative desulfurization based on sulfonated carbon materials[J]. Fuel Process Technol, 2022, 235: 107372. |
13 | LIN S C, NG S F, ONG W J. Life cycle assessment of environmental impacts associated with oxidative desulfurization of diesel fuels catalyzed by metal-free reduced graphene oxide[J]. Environ Pollut, 2021, 288: 117677. |
14 | REZVANI M A, AGHBOLAGH Z S, MONFARED H H. Green and efficient organic-inorganic hybrid nanocatalyst for oxidative desulfurization of gasoline[J]. Appl Organomet Chem, 2018, 32(12): e4592. |
15 | FANG Z, ZHAO Z G, LI N, et al. Low-temperature catalytic oxidative desulfurization by two-phase system with O-bridged diiron perfluorophthalocyanine[J]. Fuel, 2021, 306: 121649. |
16 | GAO S R, CHEN X C, XI X T, et al. Coupled oxidation-extraction desulfurization: a novel evaluation for diesel fuel[J]. ACS Sustainable Chem Eng, 2019, 7(6): 5660-5668. |
17 | ZUO M G, HUANG X Q, LI J X, et al. Oxidative desulfurization in diesel via a titanium dioxide triggered thermocatalytic mechanism[J]. Catal Sci Technol, 2019, 9(11): 2923-2930. |
18 | ZHOU X Y, WANG T Y, LIU H, et al. Desulfurization through photocatalytic oxidation: a critical review[J]. ChemSusChem, 2021, 14(2): 492-511. |
19 | SHAFI R F, AMMAR S H, RASHED M K. Catalytic/photocatalytic oxidative desulfurization activities of heteropolyacid immobilized on magnetic polythiophene nanocatalyst[J]. J Sulfur Chem, 2021, 42(4): 443-463. |
20 | ORTIZ-BUSTOS J, PEREZ DEL PULGAR H, PEREZ Y, et al. Enhanced adsorption-catalysis combination for the removal of sulphur from fuels using polyoxometalates supported on amphipathic hybrid mesoporous silica nanoparticles[J]. Dalton Trans, 2023, 52(30): 10423-10436. |
21 | YUZBASHI S, MOUSAZADEH M H, RAMEZANI N, et al. Mesoporous zirconium-silica nanocomposite modified with heteropoly tungstophosphoric acid catalyst for ultra-deep oxidative desulfurization[J]. Appl Organomet Chem, 2019, 34(2): e5326. |
22 | LI J R, YANG Z, LI S W, et al. Review on oxidative desulfurization of fuel by supported heteropolyacid catalysts[J]. J Ind Eng Chem, 2020, 82: 1-16. |
23 | CHEN X F, ZHANG G H, LI B, et al. An integrated giant polyoxometalate complex for photothermally enhanced catalytic oxidation[J]. Sci Adv, 2021, 7(30): eabf8413. |
24 | 韩旭, 白雪, 张仲, 等. PW11M@Cu3(BTC)2杂化物的合成及燃料油深度脱硫活性[J]. 高等学校化学学报, 2023, 44(4): 9-17. |
HAN X, BAI X, ZHANG Z, et al. Synthesis and deep desulfurization activity of fuel oil of PW11M@Cu3(BTC)2 hybrid[J]. Chem J Chin Univ, 2023, 44(4): 9-17. | |
25 | ZHAO D Y, FENG J L, HUO Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5350): 548-552. |
26 | CRUCIANELLI M, BIZZARRI B M, SALADINO R. SBA-15 Anchored metal containing catalysts in the oxidative desulfurization process[J]. Catalysts, 2019, 9(12): 984. |
27 | TSIGDINOS G, HALLADA C. Molybdovanadophosphoric and their salts. I. investigation of methods of preparation and characterization[J]. Inorg Chem, 1968, 7(3): 437-441 |
28 | HE K, LIU S J, ZHAO G Y, et al. Ni-W catalysts supported on mesoporous SBA-15: trace W steering CO2 methanation[J]. Chem Res Chin Univ, 2022, 38(6): 1504-1511. |
29 | GAO Y, CHEN Y, WANG C Y, et al. Polyoxometalates encapsulated into hollow periodic mesoporous organosilica as nanoreactors for extraction oxidation desulfurization[J]. Catalysts, 2023, 13(4): 747. |
30 | LIU Y, LIAO J J, CHANG L P, et al. Ag modification of SBA-15 and MCM-41 mesoporous materials as sorbents of thiophene[J]. Fuel, 2022, 311: 122537. |
31 | 刘宗章, 张彤, 徐彧超, 等. 乙醇制1,3-丁二烯MgO/SBA-15催化剂的制备及其催化性能[J]. 应用化学, 2019, 36(2): 176-181. |
LIU Z Z, ZHANG T, XU Y C, et al. Preparation of MgO/SBA-15 catalyst and its catalytic performance for the synthesis of 1,3-butadiene from ethanol[J]. Chin J Appl Chem, 2019, 36(2): 176-181. | |
32 | AHMADIAN M, ANBIA M. Keggin-type heteropolyanions immobilized on phosphorus slag derived SiO2: synthesis, characterization, and their catalytic oxidative desulfurization activity[J]. Energy Fuels, 2023, 37(21): 16790-16804. |
33 | JING F, KATRYNIOK B, DUMEIGNIL F, et al. Catalytic selective oxidation of isobutane to methacrylic acid on supported (NH4)3HPMo11VO40 catalysts[J]. J Catal, 2014, 309: 121-135. |
34 | YU S P, ZHAO X H, SU G Y, et al. Synthesis and electrocatalytic performance of a P-Mo-V Keggin heteropolyacid modified Ag @Pt/MWCNTs catalyst for oxygen reduction in proton exchange membrane fuel cell[J]. Ionics, 2019, 25(11): 5141-5152. |
35 | SUBHAN F, ASLAM S, YAN Z F, et al. Highly dispersive lanthanum oxide fabricated in confined space of SBA-15 for adsorptive desulfurization[J]. Chem Eng J, 2020, 384: 123271. |
36 | 刘宁, 王丹凤, 伍素云, 等. 短孔道介孔分子筛Zr-Ce-SBA-15固载酸性离子液体催化合成双酚F[J]. 应用化学, 2020, 37(9): 1038-1047. |
LIU N, WANG D F, WU S Y, et al. Catalytic synthesis of bisphenol F over short-channeled mesoporous molecular sieve Zr-Ce-SBA-15 supported acidic ionic liquids[J]. Chin J Appl Chem, 2020, 37(9): 1038-1047. | |
37 | POPA A, SASCA V, VERDES O, et al. Heteropolyacids anchored on amino-functionalized MCM-41 and SBA-15 and its application to the ethanol conversion reaction[J]. J Therm Anal Calorim, 2016, 127(1): 319-334. |
38 | ZHANG Y, YANG W, YANG X, et al. Rational design of efficient polar heterogeneous catalysts for catalytic oxidative-adsorptive desulfurization in fuel oil[J]. Appl Catal A, 2022, 632: 118498. |
39 | MA S, BAO W, LIU B, et al. PMo11V polyoxometalate encapsulated into hollow mesoporous carbon spheres: a highly efficient and ultra-stable catalyst for oxidative desulfurization[J]. Appl Surf Sci, 2022, 606: 119014. |
40 | JIANG W, XIAO J, GAO X, et al. In situ fabrication of hollow silica confined defective molybdenum oxide for enhanced catalytic oxidative desulfurization of diesel fuels[J]. Fuel, 2021, 305: 121470. |
41 | JI D D, XUE R, ZHOU M J, et al. Preparation and photocatalytic performance of tungstovanadophosphoric heteropoly acid salts[J]. RSC Adv, 2019, 9(32): 18320-18325. |
42 | SONG C Q, WANG Z H, YIN Z, et al. Principles and applications of photothermal catalysis[J]. Chem Catal, 2022, 2(1): 52-83. |
43 | ZHANG Z W, WEI K H, LI C, et al. Oxidation adsorptive desulfurization of jet fuel using mesoporous sieve loaded with TiO2[J]. Chem Select, 2021, 6(12): 2913-2918. |
44 | MATEO D, CERRILLO J L, DURINI S, et al. Fundamentals and applications of photo-thermal catalysis[J]. Chem Soc Rev, 2021, 50(3): 2173-2210. |
45 | HUO H Y, LIU Y W, YUAN M, et al. Synthesis and characterization of H5PV2Mo10O40@Cu3(BTC)2 and its use as a heterogeneous catalyst for oxidative desulfurization: a comprehensive chemistry laboratory experiment[J]. J Chem Educ, 2021, 98(11): 3580-3586. |
46 | MA L, GUO F F, MA J F. Two Cu(Ⅰ)-based inorganic-organic complexes assembled with polyoxometalate and thiacalix[4]arene for efficient catalytic reactions[J]. New J Chem, 2022, 46(15): 6995-7002. |
47 | YANG H W, JIANG B, SUN Y L, et al. Polymeric cation and isopolyanion ionic self-assembly: novel thin-layer mesoporous catalyst for oxidative desulfurization[J]. Chem Eng J, 2017, 317: 32-41. |
[1] | 刘宁, 王丹凤, 伍素云, 刘水林, 付琳, 刘跃进. 短孔道介孔分子筛Zr-Ce-SBA-15固载酸性离子液体催化合成双酚F[J]. 应用化学, 2020, 37(9): 1038-1047. |
[2] | 宋胜杰, 赵柳, 佟欢, 赵鹏, 马康富, 储雨, 陈立东, 成卫国. 多酸结构对纳米钛硅TS-1沸石催化氧化脱硫性能的影响[J]. 应用化学, 2020, 37(8): 952-959. |
[3] | 赵柳, 宋胜杰, 马康富, 王宏, 付丽华, 刘新阳, 陈立东, 成卫国. 核-壳结构多酸/磁性铈铁纳米复合氧化物@SiO2吸附-氧化脱硫性能[J]. 应用化学, 2020, 37(12): 1457-1464. |
[4] | 刘宗章,张彤,徐彧超,姜浩锡,张敏华. 乙醇制1,3-丁二烯MgO/SBA-15催化剂的制备及其催化性能[J]. 应用化学, 2019, 36(2): 176-181. |
[5] | 刘宁,刘水林,伍素云,唐新德,吴智,李爱阳. CTAB-P123辅助制备有序介孔KF/Al-Ce-SBA-15固体碱及其催化性能[J]. 应用化学, 2019, 36(11): 1294-1300. |
[6] | 刘迪,佟欢,袁琳杰,张子鹏,马康富,远琳,张婉钰,陈立东,王祥生,郭洪臣. 磷钼酸和钛硅纳米复合氧化物构筑高活性氧化脱硫催化剂[J]. 应用化学, 2018, 35(11): 1351-1356. |
[7] | 陈立东, 佟欢, 王旭阳, 宋鹏月, 刘迪, 姬艳晴, 丁威, 贾意欣, 陈永英, 姜春杰. Keggin结构多阴阳离子构筑高活性多酸基氧化脱硫催化剂[J]. 应用化学, 2017, 34(11): 1301-1306. |
[8] | 陈立东, 刘迪, 牛思祺, 姜春杰, 刘丽萍, 王祥生, 朱江. 磷钨酸纳米ZSM-5复合催化剂的氧化脱硫反应性[J]. 应用化学, 2016, 33(3): 364-366. |
[9] | 郭丹丽, 张华, 胡秋云, 蔡三燕, 陈梓云, 翁文. 不同载体涂敷的纤维素酯手性固定相的制备及性能[J]. 应用化学, 2013, 30(10): 1231-1236. |
[10] | 荆, 涛, 覃志乐, 宋伟明, 赵云鹏, 邓启刚. 三丁基锡/SBA-15功能配合物的合成、表征及对Friedel-Crafts反应的选择性催化[J]. 应用化学, 2013, 30(08): 945-950. |
[11] | 傅鹏远, 杨春. Zr(SO4)2·4H2O/SBA-15固体酸催化剂的制备及其催化性能[J]. 应用化学, 2010, 27(08): 924-930. |
[12] | 张蓉芳, 杨春. 多金属氧酸盐/SBA-15介孔杂化材料的稳定性[J]. 应用化学, 2009, 26(1): 15-20. |
[13] | 石晓波, 汪德先, 万屏南, 李春根, 王赛英. 过渡金属磷钼钒酸盐纳米微粒的固相合成[J]. 应用化学, 2003, 20(9): 857-861. |
[14] | 刘万楹, 雷正兰, 吕伟, 王晋昆. 有机硫化物的等离子体液相氧化脱硫[J]. 应用化学, 1997, 0(5): 83-85. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||