
应用化学 ›› 2023, Vol. 40 ›› Issue (9): 1245-1257.DOI: 10.19894/j.issn.1000-0518.230025
收稿日期:
2023-02-15
接受日期:
2023-07-13
出版日期:
2023-09-01
发布日期:
2023-09-14
通讯作者:
上官华媛
Dao-Zhen CHENG1, Zhen-Ran WANG2, Hua-Yuan SHANGGUAN3,4()
Received:
2023-02-15
Accepted:
2023-07-13
Published:
2023-09-01
Online:
2023-09-14
Contact:
Hua-Yuan SHANGGUAN
About author:
hyshangguan@iue.ac.cn摘要:
水通道蛋白(AQPs)对水分子具有高选择性和渗透性,是介导水分子转运的膜蛋白。人工水通道一般由各种有机或无机材料(如碳材料、有机化合物以及多肽等)组装而成,旨在模仿天然水通道蛋白的结构和功能。本文介绍了天然、生物启发及合成水通道的种类、结构及其渗透机理,并比较了单分子、超分子及碳纳米材料等人工水通道在近20年间的研究进展。详细地阐述了不同的人工水通道材料特性对结构和功能的影响,并重点剖析了人工水通道的不足以及开发新型人工水通道面临的挑战,最后展望了人工水通道的未来前景。
中图分类号:
程道侦, 王真然, 上官华媛. 基于水通道蛋白设计的人工水通道研究进展[J]. 应用化学, 2023, 40(9): 1245-1257.
Dao-Zhen CHENG, Zhen-Ran WANG, Hua-Yuan SHANGGUAN. Research Progress in Designing Artificial Water Channels Based on Aquaporin[J]. Chinese Journal of Applied Chemistry, 2023, 40(9): 1245-1257.
图1 (a)细胞膜中各种成分示意图,主要由脂质和跨膜蛋白通道组成[7]; (b)水通过嵌入脂质体的水通道传输示意图[8]; (c)水通道蛋白1(AQP1)的侧视图—沙漏形状[9]; (d) AQP1四聚体[9]; (e) AQP1中水运输模式(AQP1通道内壁氨基酸分布)[2]
Fig.1 (a) Schematic diagram of various components in the cell membrane, mainly consisting of lipids and transmembrane protein channels[7]; (b) Schematic diagram of water transport through water channels embedded in liposomes[8]; (c) Side view of Aquaporin-1 (AQP1) (hourglass shape)[9]; (d) AQP1 tetramer[9]; (e) Water transport pattern in AQP1 (amino acid distribution in the inner wall of AQP1 channel)[2]
图2 (a) 短杆菌肽A折叠形成β-螺旋状[9]; (b)水分子在gA单体、过渡状态和gA二聚体形成后3种情况下的取向示意图[9,13]
Fig.2 (a) β-Helix formed by folding of gramicidin A (gA) [9]; (b) Schematic representation of the orientation of water molecules in the three cases of gA monomer, transition state and after gA dimer formation[9,13]
Name | Type | Hydrophilicity | Diameter/? | Modified or not | Polar or charged group | Permeability (H2O/s/channel) | Selectivity | Distortion | Large area integration | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
4-LA | Single-molecule | Hydrophobic | 3~6.5 | Yes | Yes | 2.7×1010 | Only Water | No | No | [ |
Aquafoldmer-1 | Single-molecule | Hydrophilic | 2.8 | No | No | 3×109 | Only Water | No | No | [ |
PAH[ | Single-molecule | Hydrophobic | 3~5 | No | No | 3.7×109 | Water and Proton | No | No | [ |
PAPs | Self-assembly | Unreported | 5 | No | No | 3.5×108 | Water and Proton | No | No | [ |
AQP1 | Protein | Mixed | 2.8 | No | Yes | 3×109~4×109 | Only Water | Yes | No | [ |
gA | Protein | Mixed | 40 | No | Yes | 5.3×108 | Water and Ions | Yes | No | [ |
Zwitterionic | Self-assembly | Hydrophilic | 2.6 | No | No | Unreported | Water | No | No | [ |
Porous-DD | Self-assembly | Hydrophobic | 14.5 | No | No | Unreported | Water and Proton | No | No | [ |
I-Quartet | Self-assembly | Hydrophilic | 2.6 | No | No | Unreported | Water and Proton | No | No | [ |
PAH4s | Single-molecule | Unreported | Unreported | No | No | Unreported | Water | No | No | [ |
PAH5s | Single-molecule | Unreported | Unreported | No | No | Unreported | Water | No | No | [ |
S-HC8 | Single-molecule | Hydrophilic | 2.6 | No | No | 1×106 | Water and Proton | No | No | [ |
wCNTs | Single-molecule | Hydrophobic | 15 | Yes | Yes | 1.9×109 | Water and Proton | No | Yes | [ |
nCNTs | Single-molecule | Hydrophobic | 0.8 | Yes | Yes | 2.3×1010 | Water and Proton | No | Yes | [ |
POCs | Single-molecule | Hydrophilic | 4~10.7 | No | No | 2.85×109 | Water and Proton | No | No | [ |
F-foldamer | Self-assembly | Hydrophobic | 5.2 | No | No | 1.4×1010 | Only Water | No | No | [ |
表1 不同类型人工水通道与天然AQPs的特性对比
Table 1 Comparison of the characteristics of different types of artificial water channels and natural AQPs
Name | Type | Hydrophilicity | Diameter/? | Modified or not | Polar or charged group | Permeability (H2O/s/channel) | Selectivity | Distortion | Large area integration | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
4-LA | Single-molecule | Hydrophobic | 3~6.5 | Yes | Yes | 2.7×1010 | Only Water | No | No | [ |
Aquafoldmer-1 | Single-molecule | Hydrophilic | 2.8 | No | No | 3×109 | Only Water | No | No | [ |
PAH[ | Single-molecule | Hydrophobic | 3~5 | No | No | 3.7×109 | Water and Proton | No | No | [ |
PAPs | Self-assembly | Unreported | 5 | No | No | 3.5×108 | Water and Proton | No | No | [ |
AQP1 | Protein | Mixed | 2.8 | No | Yes | 3×109~4×109 | Only Water | Yes | No | [ |
gA | Protein | Mixed | 40 | No | Yes | 5.3×108 | Water and Ions | Yes | No | [ |
Zwitterionic | Self-assembly | Hydrophilic | 2.6 | No | No | Unreported | Water | No | No | [ |
Porous-DD | Self-assembly | Hydrophobic | 14.5 | No | No | Unreported | Water and Proton | No | No | [ |
I-Quartet | Self-assembly | Hydrophilic | 2.6 | No | No | Unreported | Water and Proton | No | No | [ |
PAH4s | Single-molecule | Unreported | Unreported | No | No | Unreported | Water | No | No | [ |
PAH5s | Single-molecule | Unreported | Unreported | No | No | Unreported | Water | No | No | [ |
S-HC8 | Single-molecule | Hydrophilic | 2.6 | No | No | 1×106 | Water and Proton | No | No | [ |
wCNTs | Single-molecule | Hydrophobic | 15 | Yes | Yes | 1.9×109 | Water and Proton | No | Yes | [ |
nCNTs | Single-molecule | Hydrophobic | 0.8 | Yes | Yes | 2.3×1010 | Water and Proton | No | Yes | [ |
POCs | Single-molecule | Hydrophilic | 4~10.7 | No | No | 2.85×109 | Water and Proton | No | No | [ |
F-foldamer | Self-assembly | Hydrophobic | 5.2 | No | No | 1.4×1010 | Only Water | No | No | [ |
图3 (a)肽附加柱[4]芳烃水通道的分子模型[18]; (b)通过“粘性末端”方法构建的Aquafoldamer水通道[8,19]; (c)水分子在Aqf水通道中单线运输[20]; (d)孔壁内甲基和乙基的向内突出使得水通道的局部横截面减少[5]; (e)孔内基团突出导致质子水线断裂的示意图[5]
Fig.3 (a) Molecular model of PAH[4] water channel[18]; (b) Aquafoldamer water channel constructed by the “sticky end” method[8,19]; (c) Single-line transport of water molecules in the Aqf water channel[20]; (d) Local cross-sectional reduction of the water channel due to the inward protrusion of methyl and ethyl groups in the pore wall[5]; (e) Schematic representation of the proton water line breakage due to the protrusion of groups in the pore[5]
图4 (a)水被包裹在两性离子聚合物通道中的示意图[29]; (b)水和质子在多孔树枝状二肽通道(孔径估计为1.45 nm)中的选择性传输[30]; (c)自组装I-quartet水通道的四元管状结构的侧视图[34]; (d) I-quartet水通道的俯视图[39]
Fig.4 (a) Schematic representation of water encapsulated in an amphiphilic polymer channel[29]; (b) Selective transport of water and protons in a porous dendritic dipeptide channel (pore size estimated to be 1.45 nm)[30]; (c) Side view of a self-assembled I-quartet water channel with a quaternary tubular structure[34]; (d) Top view of an I-quartet water channel[39]
图5 (a)低温透射电子显微镜(TEM)图像显示出插入脂质体中的CNTP[43]; (b)分子动力学模拟描述水分子在狭窄的CNTPs内以单一水线进行传输[35]; (c)聚集成束的CPNs的TEM图像[44]; (d) α,γ-环肽的一般化学结构(左图)和夹在脂质双分子层中的CPN(右图)[45]; (e)肽纳米管通道的形成示意图,纳米管通道通过不同直径的CPN单元堆叠而成[45]
Fig.5 (a) Cryogenic transmission electron microscopy (TEM) images showing CNTP inserted in liposomes[43]; (b) Molecular dynamics simulations describe the transport of water molecules in a single water line within narrow CNTPs [35]; (c) TEM images of CPNs aggregated into bundles[44]; (d) General chemical structure of α,γ?-cyclic peptides (left panel) and CPN sandwiched in lipid bilayers (right panel) [45]; (e) Schematic representation of the formation of peptide nanotube channels with nanotube channels through stacks of CPN units of different diameters[45]
图6 石墨烯作为水通道的2种类型: (a)基底面有纳米孔的单层石墨烯[55]; (b)层间间隔的石墨烯纳米片与二维纳米管[55]; (c)利用明确的层间间距作为二维水通道GO纳米片层[56]; (d)调整层间间距和拓宽通道的不同策略[57]; (e)利用ZIF-8纳米晶体的渗水孔作为水通道的新途径来促进水在GO层中的传输[58]
Fig.6 Two types of graphene as water channels: (a) Monolayer graphene with nanopores on the basal plane[55], (b) Interlayer-spaced graphene nanosheets with 2D nanotubes[55]; (c) GO nanosheet layers using well-defined interlayer spacing as 2D water channels[56]; (d) Different strategies for adjusting interlayer spacing and widening the channels[57]; (e) New ways to facilitate water transport in GO layers using percolation holes of ZIF-8 nanocrystals as water channels[58]
1 | ZHANG Z, WEN L P, JIANG L. Nanofluidics for osmotic energy conversion[J]. Nat Rev Mater, 2021, 6(7): 622-639. |
2 | JAKOWIECKI J, SZTYLER A, FILIPEK S, et al. Aquaporin-graphene interface: relevance to point-of-care device for renal cell carcinoma and desalination[J]. Interface Focus, 2018(8): 20170066. |
3 | MOSS F J, MAHINTHICHAICHAN P, LODOWSKI D T, et al. Aquaporin-7: a dynamic aquaglyceroporin with greater water and glycerol permeability than its bacterial homolog GlpF[J]. Front Physiol, 2020(11): 728. |
4 | TU Y M, SAMINENI L, REN T W, et al. Prospective applications of nanometer-scale pore size biomimetic and bioinspired membranes[J]. J Membrane Sci, 2021, 620: 118968. |
5 | ROY A, SHEN J, JOSHI H, et al. Foldamer-based ultrapermeable and highly selective artificial water channels that exclude protons[J]. Nat Nanotechnol, 2021, 16: 911-917. |
6 | LI Q, LI X S, NING L L, et al. Hyperfast water transport through biomimetic nanochannels from peptide-attached (pR)- pillar[5]arene[J]. Small, 2019, 15(6): 1804678. |
7 | SEZGIN E, LEVENTAL I, MAYOR S, et al. The mystery of membrane organization: composition, regulation and roles of lipid rafts[J]. Nat Rev Mol Cell Bio, 2017(18): 361-374. |
8 | SHEN J, YE R, ROMANIES A, et al. Aquafoldmer-based aquaporin-like synthetic water channel[J]. J Am Chem Soc, 2020, 142: 10050-10058. |
9 | LIM Y J, GOH K, WANG R. The coming of age of water channels for separation membranes: from biological to biomimetic to synthetic[J]. Chem Soc Rev, 2022, 51(11): 4537-4582. |
10 | MURATA K, MITSUOKA K, HIRAI T, et al. Structural determinants of water permeation through aquaporin-1[J]. Nature, 2000, 407(6804): 599-605. |
11 | MARX D, TUCKERMAN M E, HUTTER J, et al. The nature of the hydrated excess proton in water[J]. Nature, 1999, 397(6720): 601-604. |
12 | SUN D, HE S, BENNETT W, et al. Atomistic characterization of gramicidin channel formation[J]. J Chem Theory Comput, 2021, 17(1): 7-12. |
13 | SUN D L, PEYEAR T A, BENNETT W, et al. Molecular mechanism for gramicidin dimerization and dissociation in bilayers of different thickness[J]. Biophys J, 2019, 117(10): 1831-1844. |
14 | ABAIE E, XU L, SHEN Y X. Bioinspired and biomimetic membranes for water purification and chemical separation: a review[J]. Front Env Sci Eng, 2021, 15(6): 1-33. |
15 | TU Y M, SONG W, REN T W, et al. Rapid fabrication of precise high-throughput filters from membrane protein nanosheets[J]. Nat Mater, 2020, 19(3): 347. |
16 | OGOSHI T, SUETO R, YAGYU M, et al. Molecular weight fractionation by confinement of polymer in one-dimensional pillar[5]arene channels[J]. Nat Commun, 2019, 10(1): 1-8. |
17 | OGOSHI T, YAMAGISHI T A, NAKAMOTO Y. Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry[J]. Chem Rev, 2016, 116(14): 7937-8002. |
18 | SONG W, JOSHI H, CHOWDHURY R, et al. Artificial water channels enable fast and selective water permeation through water-wire networks[J]. Nat Nanotechnol, 2020, 15(1): 73-79. |
19 | HUO Y, ZENG H. “Sticky”-ends-guided creation of functional hollow nanopores for guest encapsulation and water transport[J]. Acc Chem Res, 2016, 49(5): 922-930. |
20 | SHEN J, FAN J, YE R, et al. Polypyridine-based helical amide foldamer channels: rapid transport of water and protons with high ion rejection[J]. Angew Chem Int Ed, 2020, 59: 13328-13334. |
21 | KHALIL-CRUZ L E, LIU P, HUANG F, et al. Multifunctional pillar[n]arene-based smart nanomaterials[J]. ACS Appl Mater Interfaces, 2021, 13(27): 31337-31354. |
22 | ZHANG H, LIU Z, ZHAO Y. Pillararene-based self-assembled amphiphiles[J]. Chem Soc Rev, 2018, 47(14): 5491-5528. |
23 | MURRAY J, KIM K, OGOSHI T, et al. The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands[J]. Chem Soc Rev, 2017, 46(9): 2479-2496. |
24 | SHEN Y X, SI W, ERBAKAN M, et al. Highly permeable artificial water channels that can self-assemble into two-dimensional arrays[J]. P Natl Acad Sci USA, 2015, 112(32): 9810-9815. |
25 | LIM Y J, GOH K, LAI G S, et al. Fast water transport through biomimetic reverse osmosis membranes embedded with peptide-attached (pR)-pillar[5]arenes water channels[J]. J Membrane Sci, 2021, 628: 119276. |
26 | BURYKIN A, WARSHEL A. What really prevents proton transport through aquaporin? charge self-energy versus proton wire proposals[J]. Biophys J, 2003, 85(6): 3696-3706. |
27 | DE GROOT B L, GRUBMULLER H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF[J]. Science, 2001, 294(5550): 2353-2357. |
28 | SAPAROV S M, PFEIFER J, AL-MOMANI L, et al. Mobility of a one-dimensional confined file of water molecules as a function of file length[J]. Phys Rev Lett, 2006, 96(14):148101. |
29 | FEI Z, ZHAO D, GELDBACH T J, et al. A synthetic zwitterionic water channel: characterization in the solid state by X-ray crystallography and NMR spectroscopy[J]. Angew Chem Int Ed, 2005, 44(35): 5720-5725. |
30 | KAUCHER M S, PETERCA M, DULCEY A E, et al. Selective transport of water mediated by porous dendritic dipeptides[J]. J Am Chem Soc, 2007, 129(38): 11698-11699. |
31 | LE DUC Y, MICHAU M, GILLES A, et al. Imidazole-quartet water and proton dipolar channels[J]. Angew Chem Int Ed, 2011, 50(48): 11366-11372. |
32 | SI W, CHEN L, HU X B, et al. Selective artificial transmembrane channels for protons by formation of water wires[J]. Angew Chem Int Ed, 2011, 50(52): 12564-12568. |
33 | HU X B, CHEN Z X, TANG G F, et al. Single-molecular artificial transmembrane water channels[J]. J Am Chem Soc, 2012, 134(20): 8384-8387. |
34 | LICSANDRU E, KOCSIS I, SHEN Y X, et al. Salt-excluding artificial water channels exhibiting enhanced dipolar water and proton translocation[J]. J Am Chem Soc, 2016, 138(16): 5403-5409. |
35 | TUNUGUNTLA R H, HENLEY R Y, YAO Y C, et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins[J]. Science, 2017, 357(6353): 792-796. |
36 | YUAN Y D, DONG J, LIU J, et al. Porous organic cages as synthetic water channels[J]. Nat Commun, 2020, 11(1): 4927. |
37 | SHEN J, ROY A, JOSHI H, et al. Fluorofoldamer-based salt- and proton-rejecting artificial water channels for ultrafast water transport[J]. Nano Lett, 2022, 22(12): 4831-4838. |
38 | KONG X, ZHAO Z, JIANG J. Dipeptides embedded in a lipid bilayer membrane as synthetic water channels[J]. Langmuir, 2017, 33(42): 11490-11495. |
39 | HUANG L B, Di VINCENZO M, AHUNBAY M G, et al. Bilayer versus polymeric artificial water channel membranes: structural determinants for enhanced filtration performances[J]. J Am Chem Soc, 2021, 143(35): 14386-14393. |
40 | KOCSIS I, SORCI M, VANSELOUS H, et al. Oriented chiral water wires in artificial transmembrane channels[J]. Sci Adv, 2018, 4(3): o5603. |
41 | ZHANG Z, WEN L, JIANG L. Bioinspired smart asymmetric nanochannel membranes[J]. Chem Soc Rev, 2018, 47(2): 322-356. |
42 | GOH K, KARAHAN H E, WEI L, et al. Carbon nanomaterials for advancing separation membranes: a strategic perspective[J]. Carbon, 2016, 109: 694-710. |
43 | TUNUGUNTLA R H, ALLEN F I, KIM K, et al. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins[J]. Nat Nanotechnol, 2016, 11(7): 639-644. |
44 | HOURANI R, ZHANG C, VAN DER WEEGEN R, et al. Processable cyclic peptide nanotubes with tunable interiors[J]. J Am Chem Soc, 2011, 133(39): 15296-15299. |
45 | FUERTES A, JUANES M, GRANJA J R, et al. Supramolecular functional assemblies: dynamic membrane transporters and peptide nanotubular composites[J]. Chem Commun, 2017, 53(56): 7861-7871. |
46 | SANBORN J R, CHEN X, YAO Y C, et al. Carbon nanotube porins in amphiphilic block copolymers as fully synthetic mimics of biological membranes[J]. Adv Mater, 2018, 30(51): e1803355. |
47 | LI Y, LI Z, AYDIN F, et al. Water-ion permselectivity of narrow-diameter carbon nanotubes[J]. Sci Adv, 2020, 6(38): a9966. |
48 | WANG Q, ZHONG Y, MILLER D P, et al. Self-assembly and molecular recognition in water: tubular stacking and guest-templated discrete assembly of water-soluble, shape-persistent macrocycles[J]. J Am Chem Soc, 2020, 142(6): 2915-2924. |
49 | ZHOU X, LIU G, YAMATO K, et al. Self-assembling subnanometer pores with unusual mass-transport properties[J]. Nat Commun, 2012, 3: 949. |
50 | WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nat Rev Mater, 2016, 1(5): 16018. |
51 | PORTER C J, WERBER J R, ZHONG M, et al. Pathways and challenges for biomimetic desalination membranes with sub-nanometer channels[J]. ACS Nano, 2020, 14(9): 10894-10916. |
52 | LIU G, JIN W, XU N. Graphene-based membranes[J]. Chem Soc Rev, 2015, 44(15): 5016-5030. |
53 | PERREAULT F, FONSECA D F A, ELIMELECH M. Environmental applications of graphene-based nanomaterials[J]. Chem Soc Rev, 2015, 44(16): 5861-5896. |
54 | DONG L, YANG J, CHHOWALLA M, et al. Synthesis and reduction of large sized graphene oxide sheets[J]. Chem Soc Rev, 2017, 46(23): 7306-7316. |
55 | SUN P Z, YANG Q, KUANG W J, et al. Limits on gas impermeability of graphene[J]. Nature, 2020, 579(7798): 229-232. |
56 | ABRAHAM J, VASU K S, WILLIAMS C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nat Nanotechnol, 2017, 12(6): 546-550. |
57 | CHEN X, WANG H. Graphene oxide patchwork membranes[J]. Nat Nanotechnol, 2021, 16(3): 226-227. |
58 | ZHANG W H, YIN M J, ZHAO Q, et al. Graphene oxide membranes with stable porous structure for ultrafast water transport[J]. Nat Nanotechnol, 2021, 16(3): 337-343. |
59 | NAIR R R, WU H A, JAYARAM P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444. |
60 | KEERTHI A, GOUTHAM S, YOU Y, et al. Water friction in nanofluidic channels made from two-dimensional crystals[J]. Nat Commun, 2021, 12(1): 3092. |
61 | ZHENG S, TU Q, URBAN J J, et al. Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms[J]. ACS Nano, 2017, 11(6): 6440-6450. |
62 | JOSHI R K, CARBONE P, WANG F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752-754. |
63 | SUN P, WANG K, ZHU H. Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications[J]. Adv Mater, 2016, 28(12): 2287-2310. |
64 | YANG E, HAM M H, PARK H B, et al. Tunable semi-permeability of graphene-based membranes by adjusting reduction degree of laminar graphene oxide layer[J]. J Membrane Sci, 2018, 547: 73-79. |
65 | SUI X, YUAN Z W, LIU C, et al. Graphene oxide laminates intercalated with 2D covalent-organic frameworks as a robust nanofiltration membrane[J]. J Mater Chem A, 2020, 8(19): 9713-9725. |
66 | HUNG W S, LIN T J, CHIAO Y H, et al. Graphene-induced tuning of the d-spacing of graphene oxide composite nanofiltration membranes for frictionless capillary action-induced enhancement of water permeability[J]. J Mater Chem A, 2018, 6(40): 19445-19454. |
67 | CHUAH C Y, GOH K, YANG Y Q, et al. Harnessing filler materials for enhancing biogas separation membranes[J]. Chem Rev, 2018, 118(18): 8655-8769. |
68 | DING M, FLAIG R W, JIANG H L, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chem Soc Rev, 2019, 48(10): 2783-2828. |
69 | LIU R, TAN K T, GONG Y, et al. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications[J]. Chem Soc Rev, 2021, 50(1): 120-242. |
70 | YUAN S, LI X, ZHU J, et al. Covalent organic frameworks for membrane separation[J]. Chem Soc Rev, 2019, 48(10): 2665-2681. |
71 | WANG Z, ZHANG S, CHEN Y, et al. Covalent organic frameworks for separation applications[J]. Chem Soc Rev, 2020, 49(3): 708-735. |
72 | HASELL T, COOPER A I. Porous organic cages: soluble, modular and molecular pores[J]. Nat Rev Mater, 2016, 1(9): 16053. |
73 | CHOWDHURY R, REN T, SHANKLA M, et al. Pore designer for tuning solute selectivity in a robust and highly permeable outer membrane pore[J]. Nat Commun, 2018, 9(1): 3661. |
74 | LIM Y J, GOH K, KURIHARA M, et al. Seawater desalination by reverse osmosis: current development and future challenges in membrane fabricatio? a review[J]. J Membrane Sci, 2021, 629: 119292. |
75 | LIU G L, ZHOU B, LIU J W, et al. The bionic water channel of ultra-short, high affinity carbon nanotubes with high water permeability and proton selectivity[J]. Sustainability, 2021, 13(1): 102. |
[1] | 陈启航, 许飞健, 王锋, 傅双婵, 于英豪. 低共熔溶剂及其在抗静电领域中应用的研究进展[J]. 应用化学, 2023, 40(3): 341-359. |
[2] | 槐梦娇, 刘陶雪婷, 姜忠义. 水通道蛋白启发下的人工水通道研究进展[J]. 应用化学, 2022, 39(1): 99-109. |
[3] | 胡家乐, 薛冬峰. 稀土离子特性与稀土功能材料研究进展[J]. 应用化学, 2020, 37(3): 245-255. |
[4] | 谢飞,卫芝贤. 四氮唑-1-乙酸及其衍生物金属构筑配合物的研究进展[J]. 应用化学, 2017, 34(10): 1099-1109. |
[5] | 郭瑞, 赛明泽, 张敏, 钟士亮, 马文涛, 陈蕾, 丁德润. 壳聚糖接枝聚乙烯吡咯烷酮复合碘膜的制备及其性能[J]. 应用化学, 2015, 32(5): 498-503. |
[6] | 刘绪峰, 程珍贤. C60氢胺化反应及其在制备含C60功能材料中的应用[J]. 应用化学, 2011, 28(12): 1343-1353. |
[7] | 吴健松, 肖应凯, 张丽, 匡文华, 梁海群, 吴康娣. Mg(OH)2晶须的制备[J]. 应用化学, 2008, 25(5): 529-533. |
[8] | 林阳辉, 崔瑞芳. [69]富勒烯的化学修饰及其功能材料性能研究[J]. 应用化学, 2002, 19(2): 104-108. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||