1 |
ZHANG M R, LIU J X, ZHU T T, et al. Functional macromolecular adhesives for bone fracture healing[J]. ACS Appl Mater Interfaces, 2022, 14(1): 1-19.
|
2 |
KOONS G L, DIBA M, MIKOS A G. Materials design for bone-tissue engineering[J]. Nat Rev Mater, 2020, 5(8): 584-603.
|
3 |
TANG J C, XI K, CHEN H, et al. Flexible osteogenic glue as an all In one solution to assist fracture fixation and healing[J]. Adv Funct Mater, 2021, 31(38): 2102465.
|
4 |
BAI S M, ZHANG X L, LV X L, et al. Bioinspired mineral-organic bone adhesives for stable fracture fixation and accelerated bone regeneration[J]. Adv Funct Mater, 2019, 30(5): 1908381.
|
5 |
XU L J, GAO S, ZHOU R B, et al. Bioactive pore-forming bone adhesives facilitating cell ingrowth for fracture healing[J]. Adv Mater, 2020, 32(10): e1907491.
|
6 |
王绪凯, 杨佳臻, 丁建勋. 双网络增强手性超分子水凝胶促进成骨[J].应用化学, 2022, 39(10): 1627-1628.
|
|
WANG X K, YANG J Z, DING J X. Double network-enhanced chiral supramolecular hydrogel to promote osteogenesis[J]. Chin J Appl Chem, 2022, 39(10): 1627-1628.
|
7 |
HUANG B X, CHEN M J, TIAN J, et al. Oxygen-carrying and antibacterial fluorinated nano-hydroxyapatite incorporated hydrogels for enhanced bone regeneration[J]. Adv Healthc Mater, 2022, 11(12): e2102540.
|
8 |
HUANG W J, CHENG S, WANG X L, et al. Noncompressible hemostasis and bone regeneration induced by an absorbable bioadhesive self-healing hydrogel[J]. Adv Funct Mater, 2021, 31(22): 2009189.
|
9 |
ZHOU D, LI S Z, PEI M J, et al. Dopamine-modified hyaluronic acid hydrogel adhesives with fast-forming and high tissue adhesion[J]. ACS Appl Mater Interfaces, 2020, 12(16): 18225-18234.
|
10 |
ZHU D Q, WANG H Y, TRINH P, et al. Elastin-like protein-hyaluronic acid (ELP-HA) hydrogels with decoupled mechanical and biochemical cues for cartilage regeneration[J]. Biomaterials, 2017, 127: 132-140.
|
11 |
WU T L, CUI C Y, HUANG Y T, et al. Coadministration of an adhesive conductive hydrogel patch and an injectable hydrogel to treat myocardial infarction[J]. ACS Appl Mater Interfaces, 2020, 12(2): 2039-2048.
|
12 |
A S, XU Q, JOHNSON M, et al. An injectable multi-responsive hydrogel as self-healable and on-demand dissolution tissue adhesive[J]. Appl Mater Today, 2021, 22: 100967.
|
13 |
DEGEN G D, STOW P R, LEWIS R B, et al. Impact of molecular architecture and adsorption density on adhesion of mussel-inspired surface primers with catechol-cation synergy[J]. J Am Chem Soc, 2019, 141(47): 18673-18681.
|
14 |
WANG B, LIU J, NIU D Y, et al. Mussel-inspired bisphosphonated injectable nanocomposite hydrogels with adhesive, self-healing, and osteogenic properties for bone regeneration[J]. ACS Appl Mater Interfaces, 2021, 13(28): 32673-32689.
|
15 |
LIU Y H, ZHU Z, PEI X B, et al. ZIF-8-modified multifunctional bone-adhesive hydrogels promoting angiogenesis and osteogenesis for bone regeneration[J]. ACS Appl Mater Interfaces, 2020, 12(33): 36978-36995.
|
16 |
CHEN K W, LIN Q X, WANG L B, et al. An all-in-one tannic acid-containing hydrogel adhesive with high toughness, notch insensitivity, self-healability, tailorable topography, and strong, instant, and on-demand underwater adhesion[J]. ACS Appl Mater Interfaces, 2021, 13(8): 9748-9761.
|
17 |
YANG K, ZHOU X Y, LI Z L, et al. Ultrastretchable, self-healable, and tissue-adhesive hydrogel dressings involving nanoscale tannic acid/ferric ion complexes for combating bacterial infection and promoting wound healing[J]. ACS Appl Mater Interfaces, 2022, 14(38): 43010-43025.
|
18 |
ZHAO X D, PEI D D, YANG Y X, et al. Green tea derivative driven smart hydrogels with desired functions for chronic diabetic wound treatment[J]. Adv Funct Mater, 2021, 31(18): 2009442.
|
19 |
KIM K, SHIN M, KOH M Y, et al. TAPE: a medical adhesive inspired by a ubiquitous compound in plants[J]. Adv Funct Mater, 2015, 25(16): 2402-2410.
|
20 |
NAM S, MOONEY D. Polymeric tissue adhesives[J]. Chem Rev, 2021, 121(18): 11336-11384.
|
21 |
TIU B D B, DELPARASTAN P, NEY M R, et al. Cooperativity of catechols and amines in high-performance dry/wet adhesives[J]. Angew Chem Int Ed Engl, 2020, 59(38): 16616-16624.
|
22 |
KIM S, YOO H Y, HUANG J, et al. Salt triggers the simple coacervation of an underwater adhesive when cations meet aromatic π electrons in seawater[J]. ACS Nano, 2017, 11(7): 6764-6772.
|
23 |
ZHU H F, MEI X H, HE Y Y, et al. Fast and high strength soft tissue bioadhesives based on a peptide dendrimer with antimicrobial properties and hemostatic ability[J]. ACS Appl Mater Interfaces, 2020, 12(4): 4241-4253.
|
24 |
GUO H L, HUANG S, XU A D, et al. Injectable adhesive self-healing multiple-dynamic-bond crosslinked hydrogel with photothermal antibacterial activity for infected wound healing[J]. Chem Mater, 2022, 34(6): 2655-2671.
|
25 |
JIN X, XIONG Y H, ZHANG X Y, et al. Self‐sdaptive sntibacterial porous implants with sustainable eesponses for infected bone defect therapy[J]. Adv Funct Mater, 2019, 29(17): 1807915.
|
26 |
SUN L W, SONG L J, LUAN S F, et al. Progress in photo-initiated living graft polymerization of biomaterials[J]. Acta Polym Sin, 2021, 52(3): 223-234.
|
27 |
LIU Z T, YI Y Z, WANG S J, et al. Bio-inspired self-adaptive nanocomposite array: from non-antibiotic antibacterial actions to cell proliferation[J]. ACS Nano, 2022, 16(10): 16549-16562.
|
28 |
DING M, ZHAO W, SONG L J, et al. Stimuli-responsive nanocarriers for bacterial biofilm treatment[J]. Rare Met, 2022, 41(2): 482-498.
|
29 |
CAO D, DING J. Recent advances in regenerative biomaterials[J]. Regener Biomater, 2022, 9: rbac098.
|
30 |
刘慧, 刘骁, 曹远桥, 等. 氨基酸基聚合物在抗菌领域的研究进展[J]. 应用化学, 2021, 38(5): 559-571.
|
|
LIU H, LIU X, CAO Y Q, et al. Research progress on amino acid-based antimicrobial polymers[J]. Chin J Appl Chem, 2021, 38(5): 559-571.
|
31 |
孙振龙, 闫顺杰, 周容涛, 等. 基于抗菌肽的智能型抗菌涂层研究进展[J]. 应用化学, 2020, 37(8): 865-876.
|
|
SUN Z L, YAN S J, ZHOU R T, et al. Recent progress in the development of smart coatings based on antimicrobial peptides[J]. Chin J Appl Chem, 2020, 37(8): 865-876.
|