应用化学 ›› 2023, Vol. 40 ›› Issue (12): 1630-1642.DOI: 10.19894/j.issn.1000-0518.230203
杨可欣1,2, 周杰2, 侯雨杉1,2, 张耀伟1, 尹晨2,3, 徐东辉2, 刘广洋2()
收稿日期:
2023-07-13
接受日期:
2023-11-06
出版日期:
2023-12-01
发布日期:
2024-01-03
通讯作者:
刘广洋
基金资助:
Ke-Xin YANG1,2, Jie ZHOU2, Yu-Shan HOU1,2, Yao-Wei ZHANG1, Chen YIN2,3, Dong-Hui XU2, Guang-Yang LIU2()
Received:
2023-07-13
Accepted:
2023-11-06
Published:
2023-12-01
Online:
2024-01-03
Contact:
Guang-Yang LIU
About author:
liuguangyang@caas.cnSupported by:
摘要:
近年来,随着农业化、工业化和城市化进程的推进,各行业排放的农药、兽药、重金属离子和染料等水体污染物对生态环境和人类的生产生活带来了巨大的危害,因此采取绿色且高效的方法去除污染物具有重要意义。金属-有机骨架(Metal-organic framework, MOFs)是一种由金属离子和有机配体组成的多孔结晶材料,具有可调节孔径和大比表面积等优势,在各个领域具有广泛的应用。然而,单金属MOFs虽性能优异,但孔隙小,活性位点少,而引入第2种金属离子形成的双金属MOFs材料具有孔道丰富、比表面积大、结构可调和丰富的活性位点等优点,广泛应用于催化、储存、载药和运输等领域。增加的吸附位点和增强的协同效应,使得双金属有机骨架材料在吸附领域有着潜在的应用前景。该综述对近8年双金属MOFs最新研究进展进行了总结,讨论了双金属MOFs在合成和应用方面所面临的挑战,并对它们的进一步发展前景进行了展望,为双金属MOFs的制备和污染物吸附应用提供参考。
中图分类号:
杨可欣, 周杰, 侯雨杉, 张耀伟, 尹晨, 徐东辉, 刘广洋. 双金属有机骨架的制备及其吸附水体污染物的研究进展[J]. 应用化学, 2023, 40(12): 1630-1642.
Ke-Xin YANG, Jie ZHOU, Yu-Shan HOU, Yao-Wei ZHANG, Chen YIN, Dong-Hui XU, Guang-Yang LIU. Research Progress on Preparation and Adsorption of Water Pollutants of Bimetallic Metal-Organic Framework[J]. Chinese Journal of Applied Chemistry, 2023, 40(12): 1630-1642.
图2 (A)一步微波辅助合成Co/Zn-MOF[26]; (B)机械化学合成双金属Co/Zn-ZIF[31]; (C)后合成修饰法合成Fe/Ni-MOF[35]; (D)原位金属置换法合成Cu-TMA[36]
Fig.2 (A) One-step microwave-assisted synthesis of Co/Zn-MOF[26]; (B) Mechanochemical synthesis of bimetallic CoZn-ZIF[31]; (C) Post-synthesis modification synthesis of Fe/Ni-MOF[35]; (D) Synthesis of Cu-TMA by in-situ metal substitution method[36]
Simple operation, high yield, high crystallinity, low cost, easy to form crystals with large specific surface area | The binding kinetics between the two metal ions and the ligands are different, resulting in an unstable topology of the obtained metal frameworks | Precise control of reaction conditions. Such as molar ratio, reaction time, solubility of metal ions and pH of the reactant solution, etc | ||
Microwave irradiation method | The use of electric or magnetic fields to induce high-speed collisions between charged particles to produce high-purity crystals | The crystal particles formed are too small and the cost and yield are not always proportional | The reaction conditions were controlled by changing the irradiation power, reaction time and temperature | |
Ambient stirring method | Fast and simple operation, avoids aggregation caused by in-situ solvent heat conditions, enables large-scale production | Poor stability performance | Strictly control the reaction conditions, such as the order of addition reaction time, etc | |
Metal-substitution method | MOFs materials that cannot be prepared by conventional methods can be obtained by substitution reaction | Incorporation of a second metal usually produces a fragile framework | Selection of metals with similar ionic radii and coordination geometries, similar reactivity, size, electronegativity |
表1 双金属MOFs制备方法的优缺点
Table 1 The advantages and disadvantages of the preparation methods of bimetallic MOFs
Simple operation, high yield, high crystallinity, low cost, easy to form crystals with large specific surface area | The binding kinetics between the two metal ions and the ligands are different, resulting in an unstable topology of the obtained metal frameworks | Precise control of reaction conditions. Such as molar ratio, reaction time, solubility of metal ions and pH of the reactant solution, etc | ||
Microwave irradiation method | The use of electric or magnetic fields to induce high-speed collisions between charged particles to produce high-purity crystals | The crystal particles formed are too small and the cost and yield are not always proportional | The reaction conditions were controlled by changing the irradiation power, reaction time and temperature | |
Ambient stirring method | Fast and simple operation, avoids aggregation caused by in-situ solvent heat conditions, enables large-scale production | Poor stability performance | Strictly control the reaction conditions, such as the order of addition reaction time, etc | |
Metal-substitution method | MOFs materials that cannot be prepared by conventional methods can be obtained by substitution reaction | Incorporation of a second metal usually produces a fragile framework | Selection of metals with similar ionic radii and coordination geometries, similar reactivity, size, electronegativity |
图3 (A) Fe3O4@MOF-808固相萃取茶饮料和果汁样品中的BUs示意图[48]; (B) Fe3O4@MOF-808、MOF-808和Fe3O4的XRD图谱[48]; (C) Fe3O4@MOF-808循环使用次数对BUs回收率的影响[48]; (D)对比Fe3O4@MOF-808与商用吸附剂C18对BUs的回收率[48]
Fig.3 (A) Schematic of the MSPE procedure for BUs from tea beverages and juice samples based on Fe3O4@MOF-808[48]; (B) XRD patterns of Fe3O4@MOF-808, MOF-808 and Fe3O4[48]; (C) The effect of recycle times of Fe3O4@MOF-808 on the recoveries of BUs[48]; (D) Comparison of the recoveries of Fe3O4@MOF-808 with commercial C18 sorbent for BUs[48]
图4 (A) Fe/Zr-MOFs的制备过程[57]; (B) Fe/Zr-MOFs的去除率[57]; (C)用于去除DC的Fe/Zr-MOFs的可重复使用性[57]; (D) Fe/Zr-MOFs对DC的吸附机理[57]
Fig.4 (A) The preparation process of the Fe/Zr-MOFs[57]; (B) Removal rate of Fe/Zr-MOFs[57]; (C) Reusability of Fe/Zr-MOFs for the removal of DC[57]; (D) The adsorption mechanism of CR by Fe/Zr-MOFs[57]
图5 (A) ZIF-ZnCo-8∶1的SEM图[69]; (B) ZIF-ZnCo-8∶1光催化前后的FT-IR和XRD[69]; (C) ZIF-ZnCo对Cr6+和Cr6+与CR混合溶液的光催化性能[69]
Fig.5 (A) ?SEM images of ZIF-ZnCo-8∶?1[69]?; (B) FT-IR and XRD of ZIF-ZnCo-8∶?1 before and after photocatalytic[69]; (C) Photocatalytic performances of ZIF-ZnCo to Cr6+ and mixed of Cr6+ and CR[69]
1 | SVENSSON G E, CHACON-GARCIA A J, ROJAS S, et al. Removal of pharmaceutical pollutants from effluent by a plant-based metal-organic framework[J]. Nat Water, 2023, 1(5): 433-442. |
2 | HUANG D, WU J, WANG L, et al. Novel insight into adsorption and co-adsorption of heavy metal ions and an organic pollutant by magnetic graphene nanomaterials in water[J]. Chem Eng J, 2019, 358: 1399-1409. |
3 | MARTINEZ-HUITLE C A, PANIZZA M. Electrochemical oxidation of organic pollutants for wastewater treatment[J]. Curr Opin Electrochem, 2018, 11: 62-71. |
4 | CHEN Z, YANG B, WEN Q, et al. Evaluation of enhanced coagulation combined with densadeg-ultrafiltration process in treating secondary effluent: organic micro-pollutants removal, genotoxicity reduction, and membrane fouling alleviation[J]. J Hazard Mater, 2020, 396: 122697. |
5 | KANG W, CHEN S, YU H, et al. Photocatalytic ozonation of organic pollutants in wastewater using a flowing through reactor[J]. J Hazard Mater, 2021, 405: 124277. |
6 | Li X, YUAN H, QUAN X, et al. Effective adsorption of sulfamethoxazole, bisphenol A and methyl orange on nanoporous carbon derived from metal-organic frameworks[J]. J Environ Sci, 2018, 63: 250-259. |
7 | KUMAR S, JAIN S, NEHRA M, et al. Green synthesis of metal-organic frameworks: a state-of-the-art review of potential environmental and medical applications[J]. Coordin Chem Rev, 2020, 420: 213407. |
8 | HASAN Z, JHUNG S H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions[J]. J Hazard Mater, 2015, 283: 329-339. |
9 | CHEN L, WANG H F, LI C, et al. Bimetallic metal-organic frameworks and their derivatives[J]. Chem Sci, 2020, 11(21): 5369-5403. |
10 | ZHANG H, WANG J, TENG Y, et al. Ce-MOF composite electrospinning as antibacterial adsorbent for the removal of 2,4-dichlorophenoxyacetic acid[J]. Chem Eng J, 2023, 462: 142195. |
11 | ZHAI Q G, BU X, MAO C, et al. Systematic and dramatic tuning on gas sorption performance in heterometallic metal-organic frameworks[J]. J Am Chem Soc, 2016, 138(8): 2524-2527. |
12 | 高宇航, 高明坤, 黄晓冬, 等. 磁性金属有机骨架材料的合成及其在食品检测前处理中的应用研究[J]. 食品科技, 2020, 45(7): 324-331. |
GAO Y H, GAO M K, HUANG X D, et al. Application of magnetic metal-organic framework composites in food quality safety and inspection[J]. Food Sci Technol, 2020, 45(7): 324-331. | |
13 | 花雨薇, 刘广洋, 刘中笑, 等. MOFs在高级氧化降解环境污染物中的应用进展[J]. 工业水处理, 2022: 1-19. |
HUA Y W, LIU G Y, LIU Z X, et al. Applioncation progress of MOFs in advanced oxidation process of environmental pollutants[J]. Ind Water Treat, 2022: 1-19. | |
14 | GAO M, LIU G, GAO Y, et al. Recent advances in metal-organic frameworks/membranes for adsorption and removal of metal ions[J]. TrAC Trends Anal Chem, 2021, 137: 116226. |
15 | LIU G, ZHANG X, LU M, et al. Adsorption and removal of organophosphorus pesticides from Chinese cabbages and green onions by using metal organic frameworks based on the mussel-inspired adhesive interface[J]. Food Chem, 2022, 393: 133337. |
16 | LOLOEI M, KALIAGUINE S, RODRIGUE D. CO2-selective mixed matrix membranes of bimetallic Zn/Co-ZIF vs. ZIF-8 and ZIF-67[J]. Separat Purif Technol, 2022, 296: 121391. |
17 | MPHUTHI L E, ERASMUS E, LANGNER E H G. Metal exchange of ZIF-8 and ZIF-67 nanoparticles with Fe(Ⅱ) for enhanced photocatalytic performance[J]. ACS Omega, 2021, 6(47): 31632-31645. |
18 | 王雨萌, 杨蓉, 邓七九, 等. 双金属MOFs及其衍生物在电化学储能领域中的应用[J]. 化学进展, 2022, 34(2): 460-473. |
WANG Y M, YANG R, DENG Q J, et al. Application of bimetallic MOFs and their derivatives in electrochemical energy storage[J]. Prog Chem, 2022, 34(2): 460-473. | |
19 | ZHANG H, WANG J, TENG Y, et al. Ce-MOF composite electrospinning as antibacterial adsorbent for the removal of 2,4-dichlorophenoxyacetic acid[J]. Chem Eng J, 2023, 462: 142195. |
20 | DAI W, WANG X, CHEN G, et al. Facile synthesis of 2D europium-metal organic frameworks nanosheets for highly efficient electrochemiluminescence in DNA detection[J]. Chem Eng J, 2023, 465: 143037. |
21 | GLOWNIAK S, SZCZESNIAK B, CHOMA J, et al. Mechanochemistry: toward green synthesis of metal-organic frameworks[J]. Mater Today, 2021, 46: 109-124. |
22 | YU K, LEE Y R, SEO J Y, et al. Sonochemical synthesis of Zr-based porphyrinic MOF-525 and MOF-545: enhancement in catalytic and adsorption properties[J]. Microporous Mesoporous Mat, 2021, 316: 110985. |
23 | RAZA N, KUMAR T, SINGH V, et al. Recent advances in bimetallic metal-organic framework as a potential candidate for supercapacitor electrode material[J]. Coordin Chem Rev, 2021, 430: 213660. |
24 | LING J, ZHOU A, WANG W, et al. One-pot method synthesis of bimetallic MgCu-MOF-74 and its CO2 adsorption under visible light[J]. ACS Omega, 2022, 7(23): 19920-19929. |
25 | VILLAJOS J A, OREAJO G, MARTOS C, et al. Co/Ni mixed-metal sited MOF-74 material as hydrogen adsorbent[J]. Int J Hydrogen Energy, 2015, 40(15): 5346-5352. |
26 | LI X, DONG H, FAN Q, et al. One-pot, rapid microwave-assisted synthesis of bimetallic metal-organic framework for efficient enzyme-free glucose detection[J]. Microchem J, 2022, 179: 107468. |
27 | NGUYEN H T T, TRAN K N T, TAN L V, et al. Microwave-assisted solvothermal synthesis of bimetallic metal-organic framework for efficient photodegradation of organic dyes[J]. Mater Chem Phys, 2021, 272: 125040. |
28 | AHMED M. Recent advancement in bimetallic metal organic frameworks (M′MOFs): synthetic challenges and applications[J]. Inorg Chem Front, 2022, 9(12): 3003-3033. |
29 | YUAN W, O'CONNOR J, JAMES S L. Mechanochemical synthesis of homo- and hetero-rare-earth(Ⅲ) metal-organic frameworks by ball milling[J]. CrystEngComm, 2010, 12(11): 3515-3517. |
30 | PANEQUE A, FERNANDEZ B J, REGUERA E, et al. Mechanochemical synthesis of hemin-imidazole complexes[J]. Trans Met Chem, 2001, 26(1): 76-80. |
31 | IMAWAKA K, SUGITA M, TAKEWAKI T, et al. Mechanochemical synthesis of bimetallic CoZn-ZIFs with sodalite structure[J]. Polyhedron, 2019, 158: 290-295. |
32 | WANG W, CHAI M, BIN-ZULKIFLI M Y, et al. Metal-organic framework composites from a mechanochemical process[J]. Mol Systems Design Eng, 2023, 8(5): 560-579. |
33 | MANDAL S, NATARAJAN S, MANI P, et al. Post-synthetic modification of metal-organic frameworks toward applications[J]. Adv Funct Mater, 2021, 31(4): 2006291. |
34 | 元宁, 杜冰洁, 贾晓霞, 等. 双金属金属有机骨架材料的制备及性能研究进展[J]. 应用化学, 2018, 35(5): 500-510. |
YUAN N, DU B J, JIA X X, et al. Research progress in preparation technology and application of bimetal metal-organic frameworks materials[J]. Chin J Appl Chem 2018, 35(5): 500-510. | |
35 | FU J Y, LIN Z Y, XIE J Y, et al. Post-modified FeNi metal-organic frameworks assisted by microwave for oxygen evolution reaction[J]. Mater Lett, 2022, 324: 132748. |
36 | HE X, CHEN D R, WANG W N. Bimetallic metal-organic frameworks (MOFs) synthesized using the spray method for tunable CO2 adsorption[J]. Chem Eng J, 2020, 382: 122825. |
37 | HE X, WANG W N. Rational design of efficient semiconductor-based photocatalysts via microdroplets: a review[J]. KONA Powder Particle J, 2019, 36: 201-214. |
38 | DONG S, LI Z, FU Y, et al. Bimetal-organic framework Cu-Ni-BTC and its derivative CuO@NiO: construction of three environmental small-molecule electrochemical sensors[J]. J Electroanal Chem, 2020, 858: 113785. |
39 | WANG R, XU H, ZHANG K, et al. High-quality Al@Fe-MOF prepared using Fe-MOF as a micro-reactor to improve adsorption performance for selenite[J]. J Hazard Mater, 2019, 364: 272-280. |
40 | CHENG W, WANG Y, GE S, et al. One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal-organic frameworks for enhanced photochemical properties[J]. Adv Composites Hybrid Mater, 2021, 4(1): 150-161. |
41 | GAIKWAD R, GAIKWAD S, HAN S. Bimetallic UTSA-16 (Zn, X; X=Mg, Mn, Cu) metal organic framework developed by a microwave method with improved CO2 capture performances[J]. J Ind Eng Chem, 2022, 111: 346-355. |
42 | HE H, LI L, LIU Y, et al. Rapid room-temperature synthesis of a porphyrinic MOF for encapsulating metal nanoparticles[J]. Nano Res, 2021, 14(2): 444-449. |
43 | LIU S, QIU Y, LIU Y, et al. Recent advances in bimetallic metal-organic frameworks (BMOFs): synthesis, applications and challenges[J]. New J Chem, 2022, 46(29): 13818-13837. |
44 | MUBULA Y, YU M, YANG D et al. Recovery of valuable elements from solid waste with the aid of external electric field: a review[J]. J Environ Chem Eng, 2023, 11(6): 111237. |
45 | LI J, HUANG W, WANG M, et al. Low-crystalline bimetallic metal-organic framework electrocatalysts with rich active sites for oxygen evolution[J]. ACS Energy Lett, 2019, 4(1): 285-292. |
46 | MONDOL M M H, JHUNG S H. Adsorptive removal of pesticides from water with metal-organic framework-based materials[J]. Chem Eng J, 2021, 421: 129688. |
47 | DOS R, SANTOS L F S, NAVICKIENE S, et al. Evaluation of metal-organic framework as low-cost adsorbent material in the determination of pesticide residues in soursop exotic fruit (annona muricata) by liquid chromatography[J]. Food Anal Methods, 2015, 8(2): 446-451. |
48 | JIA Y, WANG Y, YAN M, et al. Fabrication of iron oxide@MOF-808 as a sorbent for magnetic solid phase extraction of benzoylurea insecticides in tea beverages and juice samples[J]. J Chromatogr, 2020, 1615: 460766. |
49 | JANJANI P, BHARDWAJ U, GUPTA R, et al. Bimetallic Mn/Fe MOF modified screen-printed electrodes for non-enzymatic electrochemical sensing of organophosphate[J]. Anal Chim Acta, 2022, 1202: 339676. |
50 | ZHANG T, WANG J, ZHANG W, et al. Amorphous Fe/Mn bimetal-organic frameworks: outer and inner structural designs for efficient arsenic(Ⅲ) removal[J]. J Mater Chem A, 2019, 7(6): 2845-2854. |
51 | MA J, FANG S, SHI P, et al. Hydrazine-functionalized guar-gum material capable of capturing heavy metal ions[J]. Carbohydr Polym, 2019, 223: 115137. |
52 | EL-YAZEED A W S, EL-REASH A Y G, ELATWY L A, et al. Facile fabrication of bimetallic Fe-Mg MOF for the synthesis of xanthenes and removal of heavy metal ions[J]. RSC Adv, 2020, 10(16): 9693-9703. |
53 | KOPPULA S, JAGASIA P, PANCHANGAM M K, et al. Synthesis of bimetallic metal-organic frameworks composite for the removal of copper(Ⅱ), chromium(Ⅵ), and uranium(Ⅵ) from the aqueous solution using fixed-bed column adsorption[J]. J Solid State Chem, 2022, 312: 123168. |
54 | ALSHORIFI F T, DAFRAWY E S M, AHMED A I. Fe/Co-MOF nanocatalysts: greener chemistry approach for the removal of toxic metals and catalytic applications[J]. ACS Omega, 2022, 7(27): 23421-23444. |
55 | PARIDA K, MISHRA K G, DSAH S K. Adsorption of toxic metal ion Cr(Ⅵ) from aqueous state by TiO2-MCM-41: equilibrium and kinetic studies[J]. J Hazard Mater, 2012, 241/242: 395-403. |
56 | HALLING-SORENSEN B, SENGELOV G, TJORNELUND J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria[J]. Arch Environ Contam Toxicol, 2002, 42(3): 263-271. |
57 | WEI F, LIANG X, REN Q, et al. The application of Bimetallic metal-organic frameworks for antibiotics adsorption[J]. J Saudi Chem Soci, 2022, 26(6): 101562. |
58 | NGUYEN V T, NGUYEN T B, CHEN C W, et al. Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground[J]. Bioresource Technol, 2019, 284: 197-203. |
59 | WANG Z, WU C W, ZHANG Z, et al. Bimetallic Fe/Co-MOFs for tetracycline elimination[J]. J Mater Sci, 2021, 56(28): 15684-15697. |
60 | YANG Z H, CAO J, CHEN Y P, et al. Mn-doped zirconium metal-organic framework as an effective adsorbent for removal of tetracycline and Cr(Ⅵ) from aqueous solution[J]. Microporous Mesoporous Mater, 2019, 277: 277-285. |
61 | JI Y, ZANG X, CHEN Z, et al. Silk Sericin enrichment through electrodeposition and carbonous materials for the removal of methylene blue from aqueous solution[J]. Int J Mol Sci, 2022, 23(3): 1668. |
62 | AHMADIJOKANI F, MOHAMMADKHANI R, AHMADIPOUYA S, et al. Superior chemical stability of UiO-66 metal-organic frameworks (MOFs) for selective dye adsorption[J]. Chem Eng J, 2020, 399: 125346. |
63 | SUN H, ZHANG H, MAO H, et al. Facile synthesis of the magnetic metal-organic framework Fe3O4/Cu3(BTC)2 for efficient dye removal[J]. Environ Chem Lett, 2019, 17: 1091-1096. |
64 | SINGH H, RAJ S, RATHOUR R K S, et al. Bimetallic Fe/Al-MOF for the adsorptive removal of multiple dyes: optimization and modeling of batch and hybrid adsorbent-river sand column study and its application in textile industry wastewater[J]. Environ Sci Pollut Res Int, 2022, 29(37): 56249-56264. |
65 | FAR H S, HASANZADEH M, NAJAFI M, et al. Highly porous organoclay-supported bimetal-organic framework (CoNi-MOF/OC) composite with efficient and selective adsorption of organic dyes[J]. Environ Sci Pollut Res Int, 2023, 30(15): 43714-43725. |
66 | LIU Y, QIU G, LIU Y, et al. Fabrication of CoFe-MOF materials by different methods and adsorption properties for Congo red[J]. J Mol Liquids, 2022, 360: 119405. |
67 | SUN Q, LIU M, LI K, et al. Facile synthesis of Fe-containing metal-organic frameworks as highly efficient catalysts for degradation of phenol at neutral pH and ambient temperature[J]. CrystEngComm, 2015, 17(37): 7160-7168. |
68 | YAO B, LUA S K, LIM H S, et al. Rapid ultrasound-assisted synthesis of controllable Zn/Co-based zeolitic imidazolate framework nanoparticles for heterogeneous catalysis[J]. Microporous Mesoporous Mater, 2021, 314: 110777. |
69 | LUO Q, HUANG X F, DENG Q L, et al. Novel 3D cross-shaped Zn/Co bimetallic zeolite imidazolate frameworks for simultaneous removal Cr(Ⅵ) and Congo red[J]. Environ Sci Pollut Res, 2022, 29(26): 40041-40052. |
[1] | 于航,王茜子,朱绪娅,刘夏晴,杨慧,李凤祥. 金属有机骨架材料MIL-101及其改性材料去除环境污染物的研究进展[J]. 应用化学, 2019, 36(11): 1221-1236. |
[2] | 安连财, 韩久放, 章应辉, 卜显和. 多孔有机聚合物吸附分离水体系中有机污染物研究和应用进展[J]. 应用化学, 2018, 35(9): 1019-1025. |
[3] | 柴凡凡,李克艳,郭新闻. 非均相Fenton催化剂的组成结构设计与性能优化[J]. 应用化学, 2016, 33(2): 133-143. |
[4] | 王东升,李文涛,杨晓芳,安广宇. 高铁酸盐:一种绿色的多功能水处理剂[J]. 应用化学, 2016, 33(11): 1221-1233. |
[5] | 卜晓阳, 吴敏, 周家宏, 杨小弟, 陆天虹, 李卉卉. 光谱法研究有机农药污染物与DNA的相互作用[J]. 应用化学, 2011, 28(04): 458-463. |
[6] | 沈文浩, 龙周, 陈小泉, 李翠翠. 造纸污水中有机污染物的分布分析[J]. 应用化学, 2011, 28(04): 471-477. |
[7] | 曹洁, 崔义, 刘淑莹. 氯苯类污染物在高层大气环境中形成的可能性[J]. 应用化学, 2010, 27(03): 249-256. |
[8] | 王鹏, 方汉平. 垃圾渗沥液中难降解有机污染物的Fenton混凝处理[J]. 应用化学, 2001, 18(5): 408-411. |
[9] | 尚庆坤, 向前, 祝红, 阎吉昌, 朱冬霞. GC/MS法研究焦炉烟气中多环芳烃类污染物[J]. 应用化学, 2001, 18(1): 79-80. |
[10] | 薛建军, 王玲, 田子华. 废水中营养污染物的吸附及再利用[J]. 应用化学, 1996, 0(2): 67-69. |
[11] | 高士祥, 杨文襄, 徐晓白. 菲涂在颗粒物上与NO2的反应[J]. 应用化学, 1988, 0(3): 32-38. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||