应用化学 ›› 2022, Vol. 39 ›› Issue (6): 990-999.DOI: 10.19894/j.issn.1000-0518.210256
收稿日期:
2021-05-26
接受日期:
2021-08-29
出版日期:
2022-06-01
发布日期:
2022-06-27
通讯作者:
杨迎春
基金资助:
Qin YANG, Ning-Hua CHEN, Yu-Jie ZHANG, Zhi-Xiang YE, Ying-Chun YANG()
Received:
2021-05-26
Accepted:
2021-08-29
Published:
2022-06-01
Online:
2022-06-27
Contact:
Ying-Chun YANG
About author:
yangyingchun@cuit.edu.cnSupported by:
摘要:
铅是一种有毒重金属,广泛分布在自然界中,会影响生态环境以及损害人体健康,因此对铅离子的检测十分必要。采用水热法制备了Ce2Zr2O7.04纳米复合材料,将其滴涂在玻碳电极上制成修饰电极。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和X射线光电子能谱(XPS)分别对材料的组成、形貌、价态进行了表征。使用方波阳极溶出伏安法(SWASV)对Pb2+进行检测,发现该修饰电极对Pb2+具有良好的电流响应,同时对缓冲溶液、除氧时间、富集电位和pH值等条件进行了优化。结果表明,在优化的测试条件下,该修饰电极对Pb2+的检测线性范围为0.0025~3.5 μmol/L,检测限(LOD)(3S/N)为0.198 nmol/L,回收率在97.6%~104.4%之间。应用于水样中Pb2+的检测表现出良好的重现性、稳定性和抗干扰能力,为水样中Pb2+的检测提供了一种新的方法。
中图分类号:
杨琴, 陈宁华, 张宇杰, 叶芝祥, 杨迎春. 铈锆复合氧化物修饰电极的制备及用于水样中Pb2+的检测[J]. 应用化学, 2022, 39(6): 990-999.
Qin YANG, Ning-Hua CHEN, Yu-Jie ZHANG, Zhi-Xiang YE, Ying-Chun YANG. Preparation of Cerium Zirconium Composite Oxide Modified Glassy Carbon Electrode and the Detection of Pb2+ in Water Samples[J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 990-999.
图2 Ce2Zr2O7.04的XPS光谱(A)XPS总谱,Ce3d(B)、Zr3d(C)和O1s(D)的高分辨率光谱
Fig.2 XPS spectra of Ce2Zr2O7.04(A) XPS total spectrum, high resolution spectra of Ce3d (B), Zr3d (C) and O1s (D)
图4 缓冲溶液(A)、除氧时间(B)、富集电位(C)、富集时间(D)和pH值(E)对电极检测Pb2+的影响
Fig.4 Effect of buffer solution (A), deoxygenation time (B), enrichment potential (C), enrichment time (D), pH (E) on electrode detection of Pb2+
电极 Electrode | 方法 Method | 线性范围 Linear range/(μmol·L-1) | 检测限 LOD/(μmol·L-1) | 参考文献 Ref. |
---|---|---|---|---|
铈锆氧化物修饰玻碳电极 Ce zroxide/GCE | 方波阳极溶出伏安法 SWASV | 0.02~0.5 | 0.006 | [ |
碳泡沫修饰金电极 Au(5.4%)?CF/gold electrodes | 微分脉冲阳极溶出伏安法 DPASV | 0.1~2.0 | 0.003 6 | [ |
聚苯胺/铋修饰石墨烯电极 PANI/Bi/graphene electrodes | 方波阳极溶出伏安法 SWASV | 0.1~1.1 | 0.000 3 | [ |
谷胱甘肽修饰电极 GSH?SPCNFE | 方波阳极溶出伏安法 SWASV | 0.005~0.725 | 0.015 | [ |
三氧化二锑修饰碳糊电极 Ce2Zr2O7.04/GCE | 方波阳极溶出伏安法 SWASV | 0.048~0.483 | 0.003 4 | [ |
铈锆复合氧化物修饰电极 Ce2Zr2O7.04/GCE | 方波阳极溶出伏安法 SWASV | 0.002 5~3.5 | 0.000 198 | 本工作 This work |
表1 不同电化学传感器测定Pb2+的比较
Table 1 Comparison of determination of Pb2+ by different electrochemical sensors
电极 Electrode | 方法 Method | 线性范围 Linear range/(μmol·L-1) | 检测限 LOD/(μmol·L-1) | 参考文献 Ref. |
---|---|---|---|---|
铈锆氧化物修饰玻碳电极 Ce zroxide/GCE | 方波阳极溶出伏安法 SWASV | 0.02~0.5 | 0.006 | [ |
碳泡沫修饰金电极 Au(5.4%)?CF/gold electrodes | 微分脉冲阳极溶出伏安法 DPASV | 0.1~2.0 | 0.003 6 | [ |
聚苯胺/铋修饰石墨烯电极 PANI/Bi/graphene electrodes | 方波阳极溶出伏安法 SWASV | 0.1~1.1 | 0.000 3 | [ |
谷胱甘肽修饰电极 GSH?SPCNFE | 方波阳极溶出伏安法 SWASV | 0.005~0.725 | 0.015 | [ |
三氧化二锑修饰碳糊电极 Ce2Zr2O7.04/GCE | 方波阳极溶出伏安法 SWASV | 0.048~0.483 | 0.003 4 | [ |
铈锆复合氧化物修饰电极 Ce2Zr2O7.04/GCE | 方波阳极溶出伏安法 SWASV | 0.002 5~3.5 | 0.000 198 | 本工作 This work |
图7 (A)同一电极上的重复性测量(重复改性10次); (B)Ce2Zr2O7.04/GCE的长期稳定性测量(在10 d内重复使用10次)
Fig.7 (A) Repeatability measurement on the same electrode (repeated modification for ten times); (B) Long-term stability measurement of Ce2Zr2O7.04/GCE (repeated 10 times within 10 days)
样品 Sample | 测量值 Detected/(μmol·L-1) | 加标量 Added/(μmol·L-1) | 测量总值 Found/(μmol·L-1) a | 相对标准偏差 RSD/% b | 回收率 Recovery/% |
---|---|---|---|---|---|
牛奶 Milk | / | 1.0 | 1.03 | 1.45 | 103.0 |
2.5 | 2.44 | 1.20 | 97.6 | ||
矿泉水 Mineral water | / | 1.0 | 1.02 | 1.29 | 102.0 |
2.5 | 2.59 | 1.31 | 103.6 | ||
自来水 Tap water | 0.003 1 | 1.0 | 1.03 | 1.22 | 103.0 |
2.5 | 2.61 | 1.19 | 104.4 |
表2 实际样品中Pb2+的检测
Table 2 Detection of Pb2+ in actual samples
样品 Sample | 测量值 Detected/(μmol·L-1) | 加标量 Added/(μmol·L-1) | 测量总值 Found/(μmol·L-1) a | 相对标准偏差 RSD/% b | 回收率 Recovery/% |
---|---|---|---|---|---|
牛奶 Milk | / | 1.0 | 1.03 | 1.45 | 103.0 |
2.5 | 2.44 | 1.20 | 97.6 | ||
矿泉水 Mineral water | / | 1.0 | 1.02 | 1.29 | 102.0 |
2.5 | 2.59 | 1.31 | 103.6 | ||
自来水 Tap water | 0.003 1 | 1.0 | 1.03 | 1.22 | 103.0 |
2.5 | 2.61 | 1.19 | 104.4 |
1 | 蔡文洁. 饮用水铅污染问题——公共健康的巨大挑战[J]. 中国环境科学, 2010, 30(8): 1025. |
CAI W J. Lead contamination in drinking water ——a huge public health challenge[J]. China Environ Sci, 2010, 30(8): 1025. | |
2 | 张强华, 石莹莹, 熊清平, 等. 分子印迹壳聚糖/凹土分离富集-火焰原子吸收光谱测定痕量铅[J]. 应用化学, 2011, 28(9): 1073-1081. |
ZHANG Q H, SHI Y Y, XIONG Q P, et al. Separation and enrichment of molecularly imprinted chitosan/attapulgite for determination of trace lead by flame atomic absorption spectrometry[J]. Chinese J Appl Chem, 2011, 28(9): 1073-1081. | |
3 | CUI L, WU J, JU H X. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials[J]. Biosens Bioelectron, 2015, 63: 276-286. |
4 | 程明明, 高永军, 张文彦, 等. 推动铅产业转型升级防止血铅事件[J]. 中国有色金属, 2012(9): 62-63. |
CHENG M M, GAO Y J, ZHANG W Y, et al. Promote the transformation and upgrading of the lead industry to prevent lead incidents[J]. Chinese Nonferrous Met, 2012(9): 62-63. | |
5 | 徐思远, 雷平, 晋冠平. 三聚氰胺基螯合树脂/碳纳米管修饰充蜡石墨电极阳极溶出伏安法测定铅和镉[J]. 应用化学, 2014, 31(2): 206-211. |
XU S Y, LEI P, JIN G P. Determination of lead and cadmium by anodic stripping voltammetry with melamine-based chelating resin/carbon nanotubes modified wax-filled graphite electrode[J]. Chinese J Appl Chem, 2014, 31(2): 206-211. | |
6 | GUMPU M B, SETHURAMAN S, KRISHNAN U M, et al. A review on detection of heavy metal ions in water-an electrochemical approach[J]. Sens Actuators B: Chem, 2015, 213: 515-533. |
7 | 肖冰, 薛培英, 韦亮, 等. 基于田块尺度的农田土壤和小麦籽粒镉砷铅污染特征及健康风险评价[J]. 环境科学, 2020, 41(6): 2869-2877. |
XIAO B, XUE P Y, WEI L, et al. Cadmium, arsenic, lead pollution characteristics and health risk assessment of farmland soil and wheat grain based on field scale[J]. Chinese J Environ Sci, 2020, 41(6): 2869-2877. | |
8 | 吴婷, 李小平, 蔡月, 等. 铅污染不同粒径土壤的重金属地球化学行为与风险[J]. 中国环境科学, 2017, 37(11): 4212-4221. |
WU T, LI X P, CAI Y, et al. Geochemical behavior and risk of heavy metals in soils with different particle sizes contaminated by lead[J]. China Environ Sci, 2017, 37(11): 4212-4221. | |
9 | 方雅莉, 朱宗强, 赵宁宁, 等. 桉树遗态磷灰石材料对铅污染土壤的钝化修复效应[J]. 环境科学, 2020, 41(3): 1498-1504. |
FANG Y L, ZHU Z Q, ZHAO N N, et al. Passivation effect of eucalyptus relic apatite material on lead contaminated soil[J]. Chinese J Environ Sci, 2020, 41(3): 1498-1504. | |
10 | 李立平, 赵强, 张红毅, 等. 钙、氯对磷酸盐稳定污染土壤中铅的促进作用研究[J]. 环境科学学报, 2017, 37(11): 4344-4351. |
LI L P, ZHAO Q, ZHANG H Y, et al. Facilitating effect of calcium and chlorine on stabilization of lead in contaminated soil by phosphate[J]. Acta Sci Circum, 2017, 37(11): 4344-4351. | |
11 | ARAGAY G, MERKO A. Nanomaterials application in electrochemical detection of heavy metals[J]. Electrochim Acta, 2012, 84: 49-61. |
12 | HU B, WANG H, WU Z, et al. Chip-based array magnetic solid phase microextraction on-line coupled with inductively coupled plasma mass spectrometry for the determination of trace heavy metals in cells[J]. Analyst, 2015, 140(16): 5619-5626. |
13 | SILVA E L, ROLDAN P D S, GINE M F. Simultaneous preconcentration of copper, zinc, cadmium, and nickel in water samples by cloud point extraction using 4-(2-pyridylazo)-resorcinol and their determination by inductively coupled plasma optic emission spectrometry[J]. J Hazard Mater, 2009, 171(1/2/3): 1133-1138. |
14 | LO J M, WEI J C. Determination of Arsenic and mercury in various environmental matrices by chemical neutron activation analysis[J]. J Chin Soc-Taip, 1999, 46(4): 623-632. |
15 | LOSEV V N, BUYKO O V, TROFIMCHUK A K, et al. Silica sequentially modified with polyhexamethylene guanidine and Arsenazo I for preconcentration and ICP-OES determination of metals in natural waters[J]. Microchem J, 2015, 123: 84-89. |
16 | PUJOL L, EVRARD D, GROENEN-SERRANO K, et al. Electrochemical sensors and devices for heavy metals assay in water: the French groups' contribution[J]. Front Chem, 2014, 2: 19. |
17 | FELDMANN J, SALAÜN, PASCAL, et al. Critical review perspective: elemental speciation analysis methods in environmental chemistry-moving towards methodological integration[J]. Environ Chem, 2009, 6: 275-289. |
18 | MAZLOOMIFA A, KHATIBI N. Preconcentration and determination of lead by solidification of floated organic drop coupled with nanodrop spectrophotometry[J]. Adv Mater Res, 2013, 829: 825-830. |
19 | 吴倩, 毕洪梅, 韩晓军. 重金属离子的电化学检测研究进展[J]. 分析化学, 2021, 49(3): 330-340. |
WU Q, BI H M, HAN X J. Research progress in electrochemical detection of heavy metal ions[J]. Chinese J Anal Chem, 2021, 49(3): 330-340. | |
20 | BASHIR N, AKHTAR M, NAWAZ H Z R, et al. A high performance electrochemical sensor for Pb2+ ions based on carbon nanotubes functionalized CoMn2O4 nanocomposite[J]. Chem Select, 2020, 5(26): 7909-7918. |
21 | HE Y, MA L, ZHOU L Y, et al. Preparation and application of bismuth/MXene nano-composite as electrochemical sensor for heavy metal ions detection[J]. Nanomaterials, 2020, 10(5): 866-876. |
22 | LI S S, JIANG M, JIANG T J, et al. Competitive adsorption behavior toward metal ions on nano-Fe/Mg/Ni ternary layered double hydroxide proved by XPS: evidence of selective and sensitive detection of Pb(Ⅱ)[J]. J Hazard Mater, 2017, 338: 1-10. |
23 | LI P H, LI Y X, CHEN S H, et al. Sensitive and interference-free electrochemical determination of Pb(Ⅱ) in wastewater using porous Ce-Zr oxide nanospheres[J]. Sens Actuators B: Chem, 2018, 257: 1009-1020. |
24 | JAMPAIAH D, REDDY S T, KANDJANI A E, et al. Fe-doped CeO2 nanorods for enhanced peroxidase-like activity and their application towards glucose detection[J]. J Mater Chem B, 2016, 4(22): 3874-3885. |
25 | GALTAYRIES A, SPORKEN R, RIGA J, et al. XPS comparative study of ceria/zirconia mixed oxides: powders and thin film characterization[J]. J Electron Spectrocs, 1998, 88/89/90/91: 951-956. |
26 | SUKONKET T, KHAN A, SAHA B, et al. Influence of the catalyst preparation method, surfactant amount, and steam on CO2 reforming of CH4 over 5Ni/Ce0.6Zr0.4O2 catalysts[J]. Energ Fuel, 2011, 25(3): 864-877. |
27 | REDDY B M, KHAN A. Nanosized CeO2-SiO2, CeO2-TiO2, and CeO2-ZrO2 mixed oxides: influence of supporting oxide on thermal stability and oxygen storage properties of ceria[J]. Catal Surv Asia, 2005, 9(3): 155-171. |
28 | SAJEEVAN A C, SAJITH V. A study on oxygen storage capacity of zirconium-cerium-oxide nanoparticles[J]. Adv Chem Res, 2013, 685: 123-127. |
29 | RUTYNA I, KOROLCZUK M. Determination of lead and cadmium by anodic stripping voltammetry at bismuth film electrodes following double deposition and stripping steps[J]. Sensor Actuat B: Chem, 2014, 204: 136-141. |
30 | XU R X, YU X Y, GAO C, et al. Non-conductive nanomaterial enhanced electrochemical response in stripping voltammetry: the use of nanostructured magnesium silicate hollow spheres for heavy metal ions detection[J]. Anal Chim Acta, 2013, 790: 31-38. |
31 | BALDRIANOVA L, AGRAFIOTOU P, SVANCARA I, et al. The effect of acetate concentration, solution pH and conductivity on the anodic stripping voltammetry of lead and cadmium ions at in situ bismuth-plated carbon microelectrodes[J]. Electroanal Chem, 2011, 660(1): 31-36. |
32 | SHARMA R K, PURI A, MONGA Y, et al. Acetoacetanilide-functionalized Fe3O4 nanoparticles for selective and cyclic removal of Pb2+ ions from different charged wastewaters[J]. J Mater Chem A, 2014, 2: 12888-12898. |
33 | LIU Z G, CHEN X, LIU J H, et al. Well-arranged porous Co3O4 microsheets for electrochemistry of Pb(Ⅱ) revealed by stripping voltammetry[J]. Electrochem Commun, 2013, 30: 59-62. |
34 | WEI X, LAN Z, LIU S. Development of gold-doped carbon foams as a sensitive electrochemical sensor for simultaneous determination of Pb(Ⅱ) and Cu(Ⅱ)[J]. Chem Eng J, 2016, 284: 650-656. |
35 | WANG Z, LI L, LIU E. Graphene ultrathin film electrodes modified with bismuth nanoparticles and polyaniline porous layers for detection of lead and cadmium ions in acetate buffer solutions[J]. Thin Solid Films, 2013, 544: 362-367. |
36 | PÉREZ-RÀFOLS C, SERRANO N, DÍAZ-CRUZ J M, et al. Glutathione modified screen-printed carbon nanofiber electrode for the voltammetric determination of metal ions in natural samples[J]. Talanta, 2016, 155: 8-13. |
37 | SVOBODOVÁ E, BALDRIANOVÁ L, HOEVAR S B, et al. Electrochemical stripping analysis of selected heavy metals at antimony trioxide-modified carbon paste electrode[J]. Int J Electrochem Sci, 2012, 7(1): 197-21. |
38 | WEI Y, GAO C, MENG F L, et al. SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(Ⅱ), lead(Ⅱ), copper(Ⅱ), and mercury(Ⅱ): an interesting favorable mutual interference[J]. J Phys Chem C, 2011, 116: 1034-1041. |
[1] | 熊海涛, 吴睿, 吴迎春. Nafion-碳纳米管修饰电极电化学发光分析法测定卡马西平[J]. 应用化学, 2021, 38(6): 731-738. |
[2] | 司晓晶, 朱文菁, 李香, 李丽, 陈子超, 丁亚萍. 聚对氨基苯磺酸/石墨烯电化学修饰电极检测药物中氧氟沙星[J]. 应用化学, 2020, 37(6): 726-732. |
[3] | 张亚, 郑建斌. 石墨烯修饰玻碳电极在对苯二酚存在下选择性测定米吐尔[J]. 应用化学, 2016, 33(1): 103-107. |
[4] | 何凤云, 潘兆瑞, 周宏, 刘欢, 俞静, 顾小燕, 唐鹏鹏. 盐酸吡哆辛在聚对氨基苯磺酸修饰电极上的电化学行为与测定[J]. 应用化学, 2015, 32(2): 225-231. |
[5] | 张亚, 杜芳艳, 郑建斌. 多贝斯在石墨烯修饰玻碳电极上的电化学行为及其测定[J]. 应用化学, 2014, 31(07): 860-864. |
[6] | 屈枫锦, 陈芳, 侯秀璋, 马晓燕. 二茂铁及其衍生物在传感器上的应用进展[J]. 应用化学, 2013, 30(12): 1393-1398. |
[7] | 历洋, 李锦州, 庞筱喆. 基于复合膜修饰玻碳电极对黄嘌呤的选择性测定[J]. 应用化学, 2013, 30(05): 578-583. |
[8] | 李娟娟, 李将渊, 年作权. 新型聚N,N-二甲基苯胺/多壁碳纳米管修饰电极的制备、表征与应用[J]. 应用化学, 2013, 30(03): 360-366. |
[9] | 李娜, 肖迎红, 鲁嘉, 王延平, 许崇正, 杨小弟. 羧基化石墨烯基导电聚吡咯复合材料的超电容性能[J]. 应用化学, 2013, 30(03): 354-359. |
[10] | 张连明, 李建平, 韦革. 铁氰化镍的磁性纳米粒子合成及化学修饰电极的制备[J]. 应用化学, 2012, 29(10): 1199-1205. |
[11] | 赵永昕, 李莉, 王坤, 陆天虹, 杨小弟, 李卉卉. 石墨烯-壳聚糖修饰玻碳电极应用于环境水中五氯酚的测定[J]. 应用化学, 2012, 29(10): 1206-1211. |
[12] | 张云怀, 董西哲, 肖鹏, 何辉超, 李小玲. 纳米镍修饰TiO2纳米管电极检测胰岛素[J]. 应用化学, 2012, 29(08): 948-953. |
[13] | 马心英, 吴义芳, 李霞. 石墨烯修饰电极的制备及其对对乙酰氨基酚的伏安测定[J]. 应用化学, 2012, 29(07): 824-829. |
[14] | 陈欢, 马伟, 孙登明. 银掺杂聚L-甲硫氨酸修饰电极同时测定对苯二酚和邻苯二酚[J]. 应用化学, 2012, 29(05): 576-584. |
[15] | 王明艳, 杨俊, 周琴, 陈龙, 陶智鹏. 新型Fe3O4纳米颗粒修饰玻碳电极对头孢噻肟钠的电催化还原及其测定[J]. 应用化学, 2012, 29(03): 346-352. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||