1 |
ZYSMAN-COLMAN E. Iridium (Ⅲ) in optoelectronic and photonics applications[M]. John Wiley Sons, 2017.
|
2 |
LIU Y X, YI R H, LIN C H, et al. Near-infrared light-emitting electrochemical cells based on the excimer emission of a cationic iridium complex[J]. J Mater Chem C, 2020, 8(41): 14378-14385.
|
3 |
YANG X, GUO H, LIU B, et al. Diarylboron-based asymmetric red-emitting Ir(Ⅲ) complex for solution-processed phosphorescent organic light-emitting diode with external quantum efficiency above 28%[J]. Adv Sci, 2018, 5(5): 1701067.
|
4 |
LIU J, JIN C, YUAN B, et al. Selectively lighting up two-photon photodynamic activity in mitochondria with AIE-active iridium(Ⅲ) complexes[J]. Chem Commun, 2017, 53(12): 2052-2055.
|
5 |
LAI P N, YOON S, TEETS T S. Efficient near-infrared luminescence from bis-cyclometalated iridium(Ⅲ) complexes with rigid quinoline-derived ancillary ligands[J]. Chem Commun, 2020, 56(62): 8754-8757.
|
6 |
SHI H, WANG Y, LIN S, et al. Recent development and application of cyclometalated iridium(Ⅲ) complexes as chemical and biological probes[J]. Dalton Trans, 2021, 50(19): 6410-6417.
|
7 |
SUTTON G D, CHOUNG K S, MARROQUIN K, et al. Bimetallic cyclometalated iridium complexes bridged by a BODIPY linker[J]. Dalton Trans, 2020, 49(39): 13854-13861.
|
8 |
YOU C, LIU D, ZHU M, et al. σ-π and p-π conjugation induced NIR-emitting iridium(Ⅲ) complexes anchored by flexible side chains in a rigid dibenzo[a,c]phenazine moiety and their application in highly efficient solution-processable NIR-emitting devices[J]. J Mater Chem C, 2020, 8(21): 7079-7088.
|
9 |
LU N, LUO Y, ZHANG Q, et al. Microenvironment-sensitive iridium(Ⅲ) complexes for disease theranostics[J]. Dalton Trans, 2020, 49(27): 9182-9190.
|
10 |
VIKRANT K, TSANG D C W, RAZA N, et al. Potential utility of metal-organic framework-based platform for sensing pesticides[J]. ACS Appl Mater Interfaces, 2018, 10(10): 8797-8817.
|
11 |
HU S, OUYANG W, GUO L, et al. Facile synthesis of Fe3O4/g-C3N4/HKUST-1 composites as a novel biosensor platform for ochratoxin A[J]. Biosens Bioelectron, 2017: 92718-92723.
|
12 |
SALINAS Y, MARTÍNEZ-MÁÑEZ R, MARCOS M D, et al. Optical chemosensors and reagents to detect explosives[J]. Chem Soci Rev, 2012, 41(3): 1261-1260.
|
13 |
XING Y, LIU C, SONG X, et al. Photostable trifluoromethyl-substituted platinum(Ⅱ) emitters for continuous monitoring of molecular oxygen[J]. J Mater Chem C, 2015, 3(10): 2166-2174.
|
14 |
DI L, XING Y, WANG X, et al. The influence of molecular structure on collision radius for optical sensing of molecular oxygen based on cyclometalated Ir(Ⅲ) complexes[J]. RSC Adv, 2018, 8(71): 41040-41047.
|
15 |
XING Y, QIAO C, LI X, et al. The dependence of oxygen sensitivity on molecular structures of Ir(Ⅲ) complexes and application for photostable and reversible luminescent oxygen sensing[J]. RSC Adv, 2019, 9(27): 15370-15380.
|
16 |
DI L, XIA Z, LI J, et al. Selective sensing and visualization of pesticides by ABW-type metal-organic framework based luminescent sensors[J]. RSC Adv, 2019, 9(66): 38469-38476.
|
17 |
XING Y, WANG L, LIU C, et al. Effects of fluorine and phenyl substituents on oxygen sensitivity and photostability of cyclometalated platinum(Ⅱ) complexes[J]. Sens Actuators B: Chem, 2020: 304127378.
|
18 |
PRITCHARD B P, ALTARAWY D, DIDIER B, et al. New basis set exchange: an open, up-to-date resource for the molecular sciences community[J]. J Chem Inform Model, 2019, 59(11): 4814-4820.
|
19 |
LU T, CHEN F. Multiwfn: a multifunctional wavefunction analyzer[J]. J Computat Chem, 2012, 33(5): 580-592.
|
20 |
HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual molecular dynamics[J]. J Mol Grap, 1996, 14(1): 33-38.
|
21 |
SUN J, WU W, ZHAO J. Long-lived room-temperature deep-red-emissive intraligand triplet excited state of naphthalimide in cyclometalated Ir(Ⅲ) complexes and its application in triplet-triplet annihilation-based upconversion[J]. Chem-A Europ J, 2012, 18(26): 8100-8112.
|
22 |
YU H, LIU C, LV X, et al. Effect of substituents on properties of diphenylphosphoryl-substituted bis-cyclometalated Ir(Ⅲ) complexes with a picolinic acid as ancillary ligand[J]. Dyes Pigm, 2017: 145136-145143.
|
23 |
ZHAO J, WU W, SUN J, et al. Triplet photosensitizers: from molecular design to applications[J]. Chem Soc Rev, 2013, 42(12): 5323-5351.
|
24 |
LIU C, SONG X, WANG Z, et al. 2-Phenylquinoline-based cyclometalated platinum(Ⅱ) complexes: synthesis and structure-photoelectric properties relationship in oxygen sensing[J]. ChemPlusChem, 2014, 79(10): 1472-1481.
|
25 |
ALAM P, KAUR G, KACHWAL V, et al. Highly sensitive explosive sensing by “aggregation induced phosphorescence” active cyclometalated iridium(Ⅲ) complexes[J]. J Mater Chem C, 2015, 3(21): 5450-5456.
|
26 |
LIU C, LV X, XING Y, et al. Trifluoromethyl-substituted cyclometalated iridium(Ⅲ) emitters with high photostability for continuous oxygen sensing[J]. J Mater Chem C, 2015, 3(31): 8010-8017.
|
27 |
DAI Y, ZHOU H, SONG X D, et al. Two (5,5)-connected isomeric frameworks as highly selective and sensitive photoluminescent probes of nitroaromatics[J]. CrystEngComm, 2017, 19(20): 2786-2794.
|
28 |
LI J, XI T, YAN B,et al. Two Cu(Ⅱ) complexes of triadimefon: crystal structure, antifungal activities and structure-activity relationship[J]. New J Chem, 2015, 39(9): 6997-7003.
|
29 |
PINO-RIOS R, INOSTROZA D, CÁRDENAS-JIRÓN G, et al. Orbital-weighted dual descriptor for the study of local reactivity of systems with (quasi-) degenerate states[J]. J Phys Chem A, 2019, 123(49): 10556-10562.
|
30 |
PINO-RIOS R, YAÑEZ O, INOSTROZA D, et al. Proposal of a simple and effective local reactivity descriptor through a topological analysis of an orbital-weighted fukui function[J]. J Computat Chem, 2017, 38(8): 481-488.
|