1 |
STENDAHL J C, RAO M S, GULER M O, et al. Intermolecular forces in the self-assembly of peptide amphiphile nanofibers[J]. Adv Funct Mater, 2006, 16: 499-508.
|
2 |
DOU X, MEHWISH N, ZHAO C, et al. Supramolecular hydrogels with tunable chirality for promising biomedical applications[J]. Acc Chem Res, 2020, 53(4): 852-862.
|
3 |
ZHANG L, WANG T, SHEN Z, et al. Chiral nanoarchitectonics: towards the design, self-assembly, and function of nanoscale chiral twists and helices[J]. Adv Mater, 2016, 28: 1044-1059.
|
4 |
KIM S, REGITSKY A U, SONG J, et al. In situ mechanical reinforcement of polymer hydrogels via metal-coordinated crosslink mineralization[J]. Nat Commun, 2021,12: 667, 1-10
|
5 |
YE X, CAPEZZA A J, XIAO X, et al. Protein nanofibrils and their hydrogel formation with metal ions[J]. ACS Nano, 2021, 15: 5341-5354.
|
6 |
WANG J, SHAO F, LI W, et al. Metal-ion-mediated supramolecular assembly of C3-peptides[J]. Chem Asian J, 2017, 12: 497-502.
|
7 |
SARKER M, IZADIFAR M, SCHREYER D, et al. Influence of ionic crosslinkers (Ca2+/Ba2+/Zn2+) on the mechanical and biological properties of 3D bioplotted hydrogel scaffolds[J]. J Biomater Sci Polym E, 2018, 29: 1126-1154.
|
8 |
SHAO C, CHANG H, WANG M, et al. High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds[J]. ACS Appl Mater Interfaces, 2017, 9: 28305-28318.
|
9 |
YANG J, XU F, HAN C R. Metal ion mediated cellulose nanofibrils transient network in covalently cross-linked hydrogels: mechanistic insight into morphology and dynamics[J]. Biomacromolecules, 2017, 18: 1019-1028.
|
10 |
JANG J, SEOL Y J, KIM H J, et al. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering[J]. J Mech Behav Biomed, 2014, 37: 69-77.
|
11 |
LEI Y, ZHANG G, JIANG H, et al. Synergistic toughening of nanocomposite hydrogel based on ultrasmall aluminum hydroxide nanoparticles and hydroxyapatite nanoparticles[J]. Polym Compos, 2019, 40: 942-951.
|
12 |
XU B, ZHENG P, GAO F, et al. A mineralized high strength and tough hydrogel for skull bone regeneration[J]. Adv Funct Mater, 2017, 27: 1604327, 1-9.
|
13 |
LI Q, BARRETT D G, MESSERSMITH P B, et al. Controlling hydrogel mechanics via bio-inspired polymer-nanoparticle bond dynamics[J]. ACS Nano, 2015, 10: 1317-1324.
|
14 |
ZHANG K, FENG Q, XU J, et al. Self-aassembled injectable nanocomposite hydrogels stabilized by bisphosphonate-magnesium (Mg2+) coordination regulates the differentiation of encapsulated stem cells via dual crosslinking[J]. Adv Funct Mater, 2017, 27: 1701642, 1-11.
|
15 |
DANNERT C, STOKKE B T, DIAS R S. Nanoparticle-hydrogel composites: from molecular interactions to macroscopic behavior[J]. Polymers, 2019, 11: 275, 1-35.
|
16 |
FANG J, LI P, LU X, et al. A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration[J]. Acta Biomater, 2019, 88: 503-513.
|
17 |
GETACHEW B A, KIM S R, KIM J H. Improved stability of self-healing hydrogel pore-filled membranes with ionic cross-links[J]. J Membr Sci, 2018, 553: 1-9.
|
18 |
WANG F, FENG C. Metal-ion-mediated supramolecular chirality of L-phenylalanine based hydrogels[J]. Angew Chem Int Ed, 2018, 57: 5655-5659.
|
19 |
REJA A, BISWAS A, YADAV J, et al. Induction of supramolecular helical handedness in a chemical reaction directed self-healable soft material[J]. ChemistrySelect, 2017, 2: 10984-10989.
|
20 |
FARUQ O, KIM B, PADALHIN A R, et al. A hybrid composite system of biphasic calcium phosphate granules loaded with hyaluronic acid-gelatin hydrogel for bone regeneration[J]. J Biomater Appl, 2017, 32: 433-445.
|
21 |
ZHOU X, JIN Q, ZHANG L, et al. Self-assembly of hierarchical chiral nanostructures based on metal-benzimidazole interactions: chiral nanofibers, nanotubes, and microtubular flowers[J]. Small, 2016, 12: 4743-4752.
|
22 |
WEI Q, LU J, WANG Q, et al. Novel synthesis strategy for composite hydrogel of collagen/hydroxyapatite-microsphere originating from conversion of CaCO3 templates[J]. Nanotechnology, 2015, 26: 115605, 1-8.
|
23 |
WANG X, SCHODER H C, MULLER W E G. Amorphous polyphosphate, a smart bioinspired nano-/bio-material for bone and cartilage regeneration: towards a new paradigm in tissue engineering[J]. J Mater Chem B, 2018, 6: 2385-2412.
|
24 |
GRIGORJEVA L, MILLERS D, SMITS K, et al. Characterization of hydroxyapatite by time-resolved luminescence and FTIR spectroscopy[J]. IOP Conf Ser: Mater Sci Eng, 2013, 49: 012005, 1-4.
|
25 |
QUINLAN E, THOMPSON E M, MATSIKO A, et al. Long-term controlled delivery of rhBMP-2 from collagen-hydroxyapatite scaffolds for superior bone tissue regeneration[J]. J Control Release, 2015, 207: 112-119.
|
26 |
SATTARY M, RAFIENIA M, KAZEMI M, et al. Promoting effect of nano hydroxyapatite and vitamin D3 on the osteogenic differentiation of human adipose-derived stem cells in polycaprolactone/gelatin scaffold for bone tissue engineering[J]. Mater Sci Eng C, 2019, 97: 141-155.
|
27 |
YE H, ZHU J, DENG D, et al. Enhanced osteogenesis and angiogenesis by PCL/chitosan/Sr-doped calcium phosphate electrospun nanocomposite membrane for guided bone regeneration[J]. J Biomater Sci Polym Ed, 2019, 30: 1505-1522.
|
28 |
DING X, LI X, LI C, et al. Chitosan/dextran hydrogel constructs containing strontium-doped hydroxyapatite with enhanced osteogenic potential in rat cranium[J]. ACS Biomater Sci Eng, 2019, 5: 4574-4586.
|
29 |
YAO X, HU Y, CAO B, et al. Effects of surface molecular chirality on adhesion and differentiation of stem cells[J]. Biomaterials, 2013, 34: 9001-9009.
|
30 |
LIU G F, ZHU L Y, JI W, et al. Inversion of the supramolecular chirality of nanofibrous structures through co-assembly with achiral molecules[J]. Angew Chem Int Ed, 2016, 128: 2457-2461.
|
31 |
LIU J, ZHAO Y, ZHAO C, et al. Hydrogen-bonding regulated supramolecular chirality with controlled biostability[J]. Nano Res, 2021, https://doi.org/10.1007/s12274-021-3752-x.
|
32 |
LIU G F, ZHANG D, FENG C L. Control of three-dimensional cell adhesion by the chirality of nanofibers in hydrogels[J]. Angew Chem Int Ed, 2014, 126: 7923-7927.
|
33 |
WEI Y, JIANG S, SI M, et al. Chirality controls mesenchymal stem cell lineage diversification through mechanoresponses[J]. Adv Mater, 2019, 31: 1900582, 1-10.
|
34 |
ZHOU Y, LEI L, ZHANG Z, et al. Cation instructed steroidal prodrug supramolecular hydrogel[J]. J Colloid Interface Sci, 2018, 528: 10-17.
|
35 |
KOKAN Z, PERIC B, VAZDAR M, et al. Metal-induced supramolecular chirality inversion of small self-assembled molecules in solution[J]. Chem Commun, 2017, 53: 1945-1948.
|
36 |
GHOSH M, HALPERIN-STERNFELD M, GRIGORIANTS I, et al. Arginine-presenting peptide hydrogels decorated with hydroxyapatite as biomimetic scaffolds for bone regeneration[J]. Biomacromolecules, 2017, 18: 3541-3550.
|
37 |
JEONG S H, KOH Y H, KIM S W, et al. Strong and biostable hyaluronic acid-calcium phosphate nanocomposite hydrogel via in situ precipitation process[J]. Biomacromolecules, 2016, 17: 841-851.
|
38 |
BJORNOY S H, BASSETT D C, UCAR S, et al correlative spatiotemporal microscale study of calcium phosphate formation and transformation within an alginate hydrogel matrix[J]. Acta Biomater, 2016, 44: 254-266.
|
39 |
PANG L, SHEN Y, HU H, et al. Chemically and physically cross-linked polyvinyl alcohol-borosilicate gel hybrid scaffolds for bone regeneration[J]. Mater Sci Eng C, 2019, 105: 110076, 1-12.
|
40 |
NABAVINIA M, KHOSHFETRAT A B, NADERI-MESHKIN H. Nano-hydroxyapatite-alginate-gelatin microcapsule as a potential osteogenic building block for modular bone tissue engineering[J]. Mater Sci Eng C, 2019, 97: 67-77.
|
41 |
CARLES-CARNER M, SALEH L S, BRYANT S J. The effects of hydroxyapatite nanoparticles embedded in a MMP-sensitive photoclickable PEG hydrogel on encapsulated MC3T3-E1 pre-osteoblasts[J]. Biomed Mater, 2018, 13: 045009, 1-11.
|
42 |
JACKSON W M, JAASMA M J, TANG R Y, et al. Mechanical loading by fluid shear is sufficient to alter the cytoskeletal composition of osteoblastic cells[J]. Am J Physiol Cell Ph, 2008, 295: C1007-C1015.
|
43 |
DANG-I A Y, KOUSAR A, LIU J, et al. Mechanically stable C2-phenylalanine hybrid hydrogels for manipulating cell adhesion[J]. ACS Appl Mater Interfaces, 2019, 11: 28657-28664.
|
44 |
KHATIWALA C B, PEYTON S R, PUTNAM A J. Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells[J]. Am J Physiol Cell Ph, 2006, 290: C1640-C1650.
|
45 |
MURPHY C M, MATSIKO A, HAUGH M G, et al. Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen-glycosaminoglycan scaffolds[J]. J Mech Behav Biomed, 2012, 11: 53-62.
|
46 |
ROGINA A, RESSLER A, MATIC I, et al. Cellular hydrogels based on pH-responsive chitosan-hydroxyapatite system[J]. Carbohydr Polym, 2017, 166: 173-182.
|
47 |
ROGINA A, ANTUNOVIC M, PRIBOLSAN L, et al. Human mesenchymal stem cells differentiation regulated by hydroxyapatite content within chitosan-based scaffolds under perfusion conditions[J]. Polymers, 2017, 9: 387, 1-17.
|
48 |
RESSLER A, RODENAS-ROCHINA J, IVANKOVIC M, et al. Injectable chitosan-hydroxyapatite hydrogels promote the osteogenic differentiation of mesenchymal stem cells[J]. Carbohydr Polym, 2018, 197: 469-477.
|
49 |
LIU J, YUAN F, MA X, et al. The cooperative effect of both molecular and supramolecular chirality on cell adhesion[J]. Angew Chem Int Ed, 2018, 57: 6475-6479.
|
50 |
DOU X, WU B, LIU J, et al. Effect of chirality on cell spreading and differentiation: from chiral molecules to chiral self-assembly[J]. ACS Appl Mater Interfaces, 2019, 11: 38568-38577.
|