[1] WANG G, ZHAO J, WANG G, et al. Low-density and structure-tunable microcellular PMMA foams with improved thermal-insulation and compressive mechanical properties[J]. Eur Polym J, 2017, 95: 382-293. [2] LIU S, DUVIGNEAU J, VANCSO G J. Nanocellular polymer foams as promising high performance thermal insulation materials[J]. Eur Polym J, 2015, 65: 33-45. [3] SERGIO E, JOSIAS T M, SANTIAGO-CALVO M, et al. Rigid polyurethane foams with infused nanoclays: relationship between cellular structure and thermal conductivity[J]. Eur Polym J, 2016, 80: 1-15. [4] KESHTKAR M, NOFAR M, PARK C B, et al. Extruded PLA/clay nanocomposite foams blown with supercritical CO2[J]. Polymer, 2014, 55(16): 4077-4090. [5] NOTARIO B, PINTO J, RODRIGUEZ-PEREZ M A. Towards a new generation of polymeric foams: PMMA nanocellular foams with enhanced physical properties[J]. Polymer, 2015, 63: 116-126. [6] MILLER D, CHATCHAISUCHA P, KUMAR V. Microcellular and nanocellular solid-state polyetherimide (PEI) foams using sub-critical carbon dioxide I. Processing and structure[J]. Polymer, 2009, 50(23): 5576-5584. [7] SUN X, KHARBAS H, PENG J, et al. A novel method of producing lightweight microcellular injection molded parts with improved ductility and toughness[J]. Polymer, 2015, 56: 102-110. [8] NOTARIO B, PINTO J, RODRIGUEZ-PEREZ M A. Nanoporous polymeric materials: a new class of materials with enhanced properties[J]. Prog Mater Sci, 2016, 78/79: 93-139. [9] BAO J B, LIU T, ZHAO L, et al. Oriented foaming of polystyrene with supercritical carbon dioxide for toughening[J]. Polymer, 2012, 53(25): 5982-5993. [10] RIZVI A, TABATABAEI A, BARZEGARI M R, et al. In situ fibrillation of CO2-philic polymers: sustainable route to polymer foams in a continuous process[J]. Polymer, 2013, 54(17): 4645-4652. [11] FLOREN M, SPILIMBERGO S, MOTTA A, et al. Porous poly(D,L-lactic acid) foams with tunable structure and mechanical anisotropy prepared by supercritical carbon dioxide[J]. J Biomed Mater Res Part B, 2011, 99B(2): 338-349. [12] MARCELO A, JOSE I V, VERA R, et al. Heat transfer in polypropylene-based foams produced using different foaming processes[J]. Adv Eng Mater, 2009, 11: 811-817. [13] ZHAO J, WANG G, WANG C, et al. Ultra-lightweight, super thermal-insulation and strong PP/CNT microcellular foams[J]. Compos Sci Technol, 2020, 191: 108084. [14] GONG P, WANG G, TRAN M P, et al. Advanced bimodal polystyrene/multi-walled carbon nanotube nanocomposite foams for thermal insulation[J]. Carbon, 2017, 120: 1-10. [15] REGLERO R J A, VALLEJOS S, SANJUAN A M, et al. Microcellular polymeric foams based on 1-vinyl-2-pyrrolidone and butyl-acrylate with tuned thermal conductivity[J]. J Appl Polym Sci, 2018, 135(7): 45872. [16] EUSEBIO S, RODRIGUEZ-PEREZ M A, JAINE L, et al. Influence of solid phase conductivity and cellular structure on the heat transfer mechanisms of cellular materials: diverse case studies[J]. Adv Eng Mater, 2009, 11(10): 818-824. [17] FERKL P, TOULEC M, LAURINI E, et al. Multi-scale modelling of heat transfer in polyurethane foams[J]. Chem Eng Sci, 2017, 172: 323-334. [18] NIKITSIN V I, ALSABRU A, KOFANOV V A, et al. A model of moist polymer foam and a scheme for the calculation of its thermal conductivity[J]. Energies, 2020, 13: 520. [19] REGLERO R J A, SAIZ-ARROYO C, DUMON M, et al. Production, cellular structure and thermal conductivity of microcellular (methyl methacrylate) (butyl acrylate) (methyl methacrylate) triblock copolymers[J]. Polym Int, 2011.60(1): 146-152 [20] LIU S, DUVIGNEAU J, VANCSO G J. Nanocellular polymer foams as promising high performance thermal insulation materials[J]. Eur Polym J, 2015, 65: 33-45. [21] LU X, CAPS R, FRICKE J, et al. Correlation between structure and thermal-conductivity of organic aerogels[J]. J Non Cryst Solids, 1995, 188(3): 226-234. [22] NIELSEN L, EBERT H P, HEMBERGER F, et al. Thermal conductivity of nonporous polyurethane[J]. High Temp-High Press, 2000, 32(6): 701-707. [23] CHERUKUPALLY P, ACOSTA E J, HINESTROZA J P, et al. Acid-base polymeric foams for the adsorption of micro-oil droplets from industrial effluents[J]. Environ Sci Technol, 2017, 51(15): 8552-8560. [24] MIN K H, MIN H Z, SUN K J, et al. Fabrication and analysis of dual-scaled shape memory foam[J]. Eur Polym J, 2018, 106: 188-195. [25] HAN Y L, LIN H, DING M M, et al. Flow-induced translocation of vesicles through narrow pore[J]. Soft Matter, 2019, 15(17): 3307-3314. [26] HAN Y L, DING M M, LI R, et al. Kinematics of non-axially positioned vesicles through a pore[J]. Chinese J Polym Sci, 2020, 138: 776-783. [27] WANG G, WANG C, ZHAO J, et al. Modelling of thermal transport through a nanocellular polymer foam: toward the generation of a new superinsulating material[J]. Nanoscale, 2017: 5996-6009. [28] ADAMCZYK J, DYLEWSKI R. The impact of thermal insulation investments on sustainability in the construction sector[J]. Renew Sustainable Energy Rev, 2017, 80: 421-429. [20] DEMORI R, BISCHOFF E, de AZEREDO A P, et al. Morphological, thermo-mechanical, and thermal conductivity properties of halloysite nanotube-filled polypropylene nanocomposite foam[J]. J Cell Plast, 2018, 54(2): 217-233. [30] ANTUNES M, REALINHO V, JOSE I V, et al. Thermal conductivity anisotropy in polypropylene foams prepared by supercritical CO2 dissolution[J]. Mater Chem Phys, 2012, 136(1): 268-276. [31] CHARLENE F, CHAUMONT P, CASSAGNAU P, et al. Polymer nano-foams for insulating applications prepared from CO2 foaming[J]. Prog Polym Sci, 2015, 41: 122-145. [32] HOSSEINI S A, TAFRESHI H V. On the importance of fibers' cross-sectional shape for air filters operating in the slip flow regime[J]. Powder Technol, 2011. 212(3): 425-431. [33] GLICKSMAN L R, SCHUETZ M, SINOFSKY M. Radiation heat transfer in foam insulation [J]. Int J Heat Mass Transf, 1987, 30(1): 187-197. [34] HAN Z D, FINA A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: areview[J]. Prog Polym Sci, 2011, 36(7): 914-944. |