[1] 王欣梅, 王修德, 康凯. 生物恐怖与生物战的特点及其医学防御对策[J]. 预防医学文献信息, 2003, 9(6): 736-738. WANG X M, WANG X D, KANG K. The characteristics of biological terrorism and biological warfare and their medical defense strategies[J]. Lit Inf Prev Med, 2003, 9(6): 736-738. [2] 晓金. 生物武器全解析[J]. 生命与灾害, 2017, 9: 8-9. XIAO J. Detailed introduction to biological weapons[J]. Life Disaster, 2017, 9: 8-9. [3] 陈家曾, 俞如旺. 生物武器及其发展态势[J]. 生物学教学, 2020, 45(6): 5-7. CHEN J Q, YU R W. Biological weapons and their development trends[J]. Biol Teach, 2020, 45(6): 5-7. [4] 唐东升, 崔建勋, 梁刚豪, 等. 发展生物安全材料学,筑牢中国国家安全城墙[J]. 应用化学, 2020, 37(9): 985-993. TANG D S, CUI J X, LIANG G H, et al. Developing biosafety materials science and building the national security wall of China[J]. Chinese J Appl Chem, 2020, 37(9): 985-993. [5] YU Y J, BU F Q, ZHOU H L, et al. Biosafety materials: an emerging new research direction of materials science from the COVID-19 outbreak[J]. Mater Chem Front, 2020, 4: 1930-1953. [6] JYOUNG J Y, HONG S H, LEE W, et al. Immunosensor for the detection of Vibrio cholerae O1 using surface plasmon resonance[J]. Biosens Bioelectron, 2006, 21(12): 2315-2319. [7] TAM P D, THANG C X. Label-free electrochemical immunosensor based on cerium oxide nanowires for Vibrio cholerae O1 detection[J]. Mat Sci Eng C-Mater, 2016, 58: 953-959. [8] LACZKA O F, MAURIZIO L, SEYMOUR J R, et al. Surface immuno-functionalisation for the capture and detection of Vibrio species in the marine environment: a new management tool for industrial facilities[J]. Plos One, 2014, 9(10): e108387. [9] LUAN K, MENG R Q, SHAN C F, et al. Terbium functionalized micelle nanoprobe for ratiometric fluorescence detection of anthrax spore biomarker[J]. Anal Chem, 2018, 90(5): 3600-3607. [10] ZHOU Z, WANG Z S, TANG Y P, et al. Optical detection of anthrax biomarkers in an aqueous medium: the combination of carbon quantum dots and europium ions within alginate hydrogels[J]. J Mater Sci, 2019, 54: 2526-2534. [11] HUANG Y X, DONG X C, LIU Y X, et al. Graphene-based biosensors for detection of bacteria and their metabolic activities[J]. J Mater Chem, 2011, 21(33): 12358-12362. [12] SETLOW P. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals[J]. J Appl Microbiol, 2006, 101(3): 514-525. [13] 陈鹏, 窦辉, 费腾, 等. 多碘含能反生物战剂合成研究进展[J]. 含能材料, 2018, 26(11): 958-966. CHEN P, DOU H, FEI T, et al. Research progress in synthesis of multi-iodine energetic anti-biological warfare agents[J]. Chinese J Energ Mater, 2018, 26(11): 958-966. [14] HE C L, ZHANG J H, SHREEVE J M. Dense iodine-rich compounds with low detonation pressures as biocidal agents[J]. Chem Eur J, 2013, 19(23): 7503-7509. [15] HE C L, ZHAO G, HOOPER J P, et al. Energy and biocides storage compounds: synthesis and characterization of energetic bridged bis(triiodoazoles)[J]. Inorg Chem, 2017, 56(21): 13547-13552. [16] CHEN L, BAI H, XU J F, et al. Supramolecular porphyrin photosensitizers: controllable disguise and photoinduced activation of antibacterial behavior[J]. ACS Appl Mater Interfaces, 2017, 9(16): 13950-13957. [17] YANG Y, HE P, WANG Y, et al. Supramolecular radical anions triggered by bacteria in situ for selective photothermal therapy[J]. Angew Chem Int Ed, 2017, 56: 16239-16242. [18] CHOI J R, YONG K W, TANG R H, et al. Lateral flow assay based on paper-hydrogel hybrid material for sensitive point-of-care detection of dengue virus[J]. Adv Healthc Mater, 2017, 6(1): 1600920. [19] YEH Y T, TANG Y, SEBASTIAN A, et al. Tunable and label-free virus enrichment for ultrasensitive virus detection using carbon nanotube arrays[J]. Sci Adv, 2016, 2(10): e1601026. [20] SONG S, HA K, GUK K, et al. Colorimetric detection of influenza A (H1N1) virus by a peptide-functionalized polydiacetylene (PEP-PDA) nanosensor[J]. RSC Adv, 2016, 6: 48566-48570. [21] CHENG N, SONG Y, ZEINHOM M M A, et al. Nanozyme-mediated dual immunoassay integrated with smartphone for use in simultaneous detection of pathogens[J]. ACS Appl Mater Interfaces, 2017, 9(46): 40671-40680. [22] SADLER D J, CHANGRANI R, ROBERTS P, et al. Thermal management of BioMEMS: temperature control for ceramic-based PCR and DNA detection devices[J]. IEEE Trans Compon Packag Technol, 2003, 26(2): 309-316. [23] CHEKIN F, BAGGA K, SUBRAMANIAN P, et al. Nucleic aptamer modified porous reduced graphene oxide/MoS2 based electrodes for viral detection: application to human papillomavirus (HPV)[J]. Sens Actuators B Chem, 2018, 262: 991-1000. [24] CAGNO V, ANDREOZZI P, D'ALICARNASSO M, et al. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism[J]. Nat Mater, 2017, 17: 195-203. [25] CHEN C Y, GUO J B, YANG M, et al. A reduced graphene oxide-Au based electrochemical biosensor for ultrasensitive detection of enzymatic activity of botulinum neurotoxin A[J]. Sens Actuators B Chem, 2015, 220: 131-137. [26] SAPSFORD K E, GRANEK J, DESCHAMPS J R, et al. Monitoring botulinum neurotoxin a activity with peptide-functionalized quantum dot resonance energy transfer sensors[J]. ACS Nano, 2011, 5(4): 2687-2699. [27] O'BRIEN J, LEE S H, ONOGI S, et al. Engineering the protein corona of a synthetic polymer nanoparticle for broad-spectrum sequestration and neutralization of venomous biomacromolecules[J]. J Am Chem Soc, 2016, 138(51): 16604-16607. [28] ARNOLD A E, MEJ A L C, KYLLO D, et al. Fungal endophytes limit pathogen damage in a tropical tree[J]. Proc Natl Acad Sci USA, 2003, 100(26): 15649-15654. [29] DIAMOND R D, KRZESICKI R, EPSTEIN B, et al. Damage to hyphal forms of fungi by human leukocytes in vitro. a possible host defense mechanism in aspergillosis and mucormycosis[J]. Am J Pathol, 1978, 91(2): 313-328. [30] LI X X, ZHANG X L, LIU Q, et al. Microfluidic system for rapid detection of airborne pathogenic fungal spores[J]. ACS Sens, 2018, 3(10): 2095-2103. [31] GAIKWAD A, JOSHI M, PATIL K, et al. Fluorescent carbon-dots (CDs) thin film for fungal detection and bio-labeling applications[J]. ACS Appl Bio Mater, 2019, 2(12): 5829-5840. [32] CHANG W Q, LIU J, ZHANG M, et al. Efflux pump-mediated resistance to antifungal compounds can be prevented by conjugation with triphenylphosphonium cation[J]. Nat Commun, 2018, 9(1): 1-12. [33] SU L Z, LI Y F, LIU Y, et al. Antifungal-inbuilt metal-organic-frameworks eradicate Candida albicans biofilms[J]. Adv Funct Mater, 2020, 30(28): 2000537. [34] HE S, SONG B, LI D, et al. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis[J]. Adv Funct Mater, 2010, 20(3): 453-459. [35] VARGHESE N, MOGERA U, GOVINDARAJ, et al. A binding of DNA nucleobases and nucleosides with graphene[J]. ChemPhysChem, 2010, 10(1): 206-210. [36] LEE C Y, JANG H, KIM H, et al. Sensitive detection of DNA from Chlamydia trachomatis by using flap endonuclease-assisted amplification and graphene oxide-based fluorescence signaling[J]. Mikrochim Acta, 2019, 186(6): 1-7. [37] 周朴帆, 肖福兵, 曾心靛,等. DNA功能化金纳米颗粒在沙眼衣原体检测中的应用[J]. 中国生物制品学杂志, 2019, 32(4): 428-433. ZHOU P F, XIAO F B, ZENG X D, et al. Application of DNA functionalized gold nanoparticles in detection of Chlamydia trachomatis[J]. Chinese J Biol, 2019, 32(4): 428-433. [38] DEZHUROV S V, PANTYUKHINA A N, TARASEVICH I V, et al. Method for producing multiplex rickettsial diagnostic preparation enables detecting the anti-Rickettsia prowazekii and anti-Coxiella burnetii antibodies simultaneously within one IFNAR: RU2557951-C1[P]. 2015-07-27. [39] CHEN K, QIU X Q, YANG D J, et al. Amino acid functionalized lignin polyampholyte as natural broad-spectrum antimicrobial agent for high-efficient personal protection[J]. Green Chem, 2020, 22(19): 6227-6616. [40] SI Y, ZHANG Z, WU W R, et al. Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications[J]. Sci Adv, 2018, 4(3): eaar5931. [41] LI H J, WANG X B, SONG Y L, et al. Super-“amphiphobic” aligned carbon nanotube films[J]. Angew Chem Int Ed, 2001, 40(9): 1743-1746. [42] HONG J W, CHEON H K, KIM S H, et al. Synthesis and characterization of UV curable urethane acrylate oligomers containing ammonium salts for anti-fog coatings[J]. Prog Org Coat, 2017, 110: 122-127. [43] ZHAO Y Y, YU C M, LAN H, et al. Improved interfacial floatability of superhydrophobic/superhydrophilic janus sheet inspired by lotus leaf[J]. Adv Funct Mater, 2017, 27(27): 1701466. [44] WONG W S Y, STACHURSKI Z H, NISBET D R, et al. Ultra-durable and transparent self-cleaning surfaces by large-scale self-assembly of hierarchical interpenetrated polymer networks[J]. ACS Appl Mater Interfaces, 2016, 8(21): 13615-13623. [45] ARPORNWICHANOP T, POLPANICH D, THIRAMANAS R, et al. PMMA-N,N,N-trimethyl chitosan nanoparticles for fabrication of antibacterial natural rubber latex gloves[J]. Carbohydr Polym, 2014, 109: 1-6. [46] ARPORNWICHANOP T, POLPANICH D, THIRAMANAS R, et al. Enhanced antibacterial activity of NR latex gloves with raspberry-like PMMA-N,N,N-trimethyl chitosan particles[J]. Int J Biol Macromol, 2015, 81: 151-158. [47] ZHOU J L, XIANG H X, ZABIHI F, et al. Intriguing anti-superbug Cu2O@ZrP hybrid nanosheet with enhanced antibacterial performance and weak cytotoxicity[J]. Nano Res, 2019, 12(6): 1453-1460. [48] ZHOU J L, FEI X, LI C Q, et al. Integrating nano-Cu2O@ZrP into in situ polymerized polyethylene terephthalate (PET) fibers with enhanced mechanical properties and antibacterial activities[J]. Polymers, 2019, 11(1): 113. [49] LUO L Q, LI G F, LUAN D, et al. Antibacterial adhesion of borneol-based polymer via surface chiral stereochemistry[J]. ACS Appl Mater Interfaces, 2014, 6(21): 19371-19377. [50] XU J Q, ZHAO H J, XIE Z X, et al. Stereochemical strategy advances microbially antiadhesive cotton textile in safeguarding skin flora[J]. Adv Healthc Mater, 2019, 8(15): 1900232. |