[1] LIU W, SHAO Q, JI G, et al. Metal organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber[J]. Chem Eng J, 2017, 313: 734-744. [2] LIU T, PANG Y, XIE X B, et al. Co/C nanoparticles with low graphitization degree: a high performance microwave-absorbing material[J]. J Mater Chem C , 2016, 4(8): 1727-1735. [3] CHEN D, WANG G S, HE S, et al. Controllable fabrication of mono-dispersed RGO-hematite nanocomposites and their enhanced wave absorption properties[J]. J Mater Chem A, 2013, 1(19): 5996-6003. [4] ZHAO H B, CHENG J B, ZHU J Y, et al. Ultralight CoNi/rGO aerogels toward excellent microwave absorption at ultrathin thickness[J]. J Mater Chem C, 2019, 7(2): 441-448. [5] KIM T, LEE J, LEE K, et al. Magnetic and dispersible FeCoNi-graphene film produced without heat treatment for electromagnetic wave absorption[J]. Chem Eng J, 2019, 361: 1182-1189. [6] WEN B, CAO M S, HOU Z L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites[J]. Carbon, 2013, 65: 124-139. [7] WANGL, BAI X Y, WEN B, et al. Honeycomb-like Co/C composites derived from hierarchically nanoporous ZIF-67 as a lightweight and highly efficient microwave absorber[J]. Compos B Eng, 2019, 166: 464-471. [8] LI H, LIANG X, CHENG Y, et al. Coin-like α-Fe2O3@CoFe2O4 core-shell composites with excellent electromagnetic absorption performance[J]. ACS Appl Mater Interfaces, 2015, 7(8): 4744-4750. [9] LI Z, HAN X, MA Y, et al. MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance[J]. ACS Sustainable Chem Eng, 2018, 6(7): 8904-8913. [10] LIANG X H, QUAN B, CHEN J, et al. Nano bimetallic@carbon layer on porous carbon nanofibers with multiple interfaces for microwave absorption applications[J]. ACS Appl Nano Mater, 2018, 1(10): 5712-5721. [11] LIU Q, ZHANG D, FAN T. Electromagnetic wave absorption properties of porous carbon/Co nanocomposites[J]. Appl Phys Lett, 2008, 93(1): 401. [12] MA J N, ZHANG X M, LIU W, et al. Direct synthesis of MOF-derived nanoporous CuO/carbon composites for high impedance matching and advanced microwave absorption[J]. J Mater Chem C, 2016, 4(48): 11419-11426. [13] SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renew Sustainable Energy Rev, 2009, 13(2): 318-345. [14] LIU C, LI F, MA L P, et al. Advanced materials for energy storage[J]. Adv Mater, 2010, 22(8): E28-E62. [15] SAN, AHME T. Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials[J]. Energy Convers Manage, 2016, 117: 132-141. [16] CHEN R, YAO R, XIA W, et al. Electro/photo to heat conversion system based on polyurethane embedded graphite foam[J]. Appl Energy, 2015, 152: 183-188. [17] BHATTACHARYA P, DHIBAR S, HATUI G, et al. Graphene decorated with hexagonal shaped M-type ferrite and polyaniline wrapper: a potential candidate for electromagnetic wave absorbing and energy storage device applications[J]. RSC Adv, 2014, 4(33): 17039-17053. [18] WANG Y, DU Y C, GUO D, et al. Precursor-directed synthesis of porous cobalt assemblies with tunable close-packed hexagonal and face-centered cubic phases for the effective enhancement in microwave absorption[J]. J Mater Sci, 2017, 52(8): 4399-4411. [19] DINEGA D P, BAWENDI M G. A solution-phase chemical approach to a new crystal structure of cobalt[J]. Angew Chem Int Ed, 1999, 38(12): 1788-1791. [20] KIM S S, JO S B, GUEON K I, et al. Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies[J]. IEEE Trans Magn, 1991, 27(6): 5462-5464. [21] ZHANG X M, GUANG B J, LIU W, et al. Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material[J]. Nanoscale, 2015, 7(30): 12932-12942. [22] ZHOU X, WANG B, JIA Z, et al. Dielectric behavior of Fe3N@C composites with green synthesis and their remarkable electromagnetic wave absorption performance[J]. J Colloid Interface Sci, 2020, 582: 515-525. [23] XIONG Y, XU L, YANG C, et al. Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption[J]. J Mater Chem A. 2020, 8(36): 18863-18871. [24] ZHANG Y, YAO M, LIU C, et al. Reduced graphene oxide-CoFe2O4/FeCo nanoparticle composites for electromagnetic wave absorption[J]. ACS Appl Nano Mater, 2020, 3(9): 8939-8948. [25] WANG X Y, LU Y K, ZHU T, et al. CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption[J]. Chem Eng J, 2020, 388: 124317. [26] ZHANG Y C, GAO S, XING H L, et al. In situ carbon nanotubes encapsulated metal nickle as high-performance microwave absorber from Ni-Zn metal-organic framework derivative[J]. J Alloys Compd, 2019, 801: 609-618. [27] ZHANG Z L, LV Y Y, CHEN X Q, et al. Porous flower-like Ni/C composites derived from MOFs toward high-performance electromagnetic wave absorption[J]. J Magn Magn Mater, 2019, 487: 165334-165334. [28] CAO M S, SONG W L, HOU Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon, 2009, 48(3): 788. [29] LI J, LU S Q, HUANG H L, et al. ZIF-67 as continuous self-sacrifice template derived NiCo2O4/CoN-CNTs nanocages as efficient bifunctional electrocatalysts for rechargeable Zn-Air batteries[J]. ACS Sustainable Chem Eng, 2018, 6: 10021-10029. [30] HONG W, KITTA M, XU Q. Bimetallic MOF-derived FeCo-P/C nanocomposites as efficient catalysts for oxygen evolution reaction[J]. Small Methods, 2018, 2(12): 1800214. [31] WANG L, GUAN Y, QIU X, et al. Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal-organic framework[J]. Chem Eng J, 2017, 326: 945-955. [32] YAN J, HUANG Y, YAN Y, et al. The high-performance electromagnetic wave absorbers based on two kinds of nickel-based MOFs-derived Ni@C microspheres[J]. ACS Appl Mater Interfaces, 2019, 11(43): 40781-40792. [33] GREEN M, LIU Z, XIANG P, et al. Ferric metal-organic framework for microwave absorption[J]. Mater Today Chem, 2018, 9: 140-148. [34] WU C, CHEN Z, WANG M, et al. Microwaveabsorption: confining tiny MoO2 clusters into reduced graphene oxide for highly efficient low frequency microwave absorption[J]. Small, 2020, 16(30): 2001686. [35] CHE R C, PENG L M, DUAN X F, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes[J]. Adv Mater, 2004, 16(5): 401-405. [36] XIANG J, LI J L, ZHANG X H, et al. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers[J]. J Mater Chem A, 2014: 16905-16914. [37] FU M, JIAO Q, ZHAO Y, et al. Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials[J]. J Mater Chem A, 2013, 2(3): 735-744. [38] GANDHI N, SINGH K, OHLAN A, et al. Thermal, dielectric and microwave absorption properties of polyaniline-CoFe2O4 nanocomposites[J]. Compos Sci Technol, 2011, 71(15): 1754-1760. [39] WANG W, TANG B, JU B, et al. Fe3O4-functionalized graphene nanosheet embedded phase change material composites: efficient magnetic- and sunlight-driven energy conversion and storage[J]. J Mater Chem A, 2017, 5: 958-968. [40] GUYOMAR D, MATEI D F, GUIFFARD B, et al. Magnetoelectricity in polyurethane films loaded with different magnetic particles[J]. Mater Lett, 2009, 63(6/7): 611-613. [41] WU W H, HUANG X Y, YAO R M, et al. Synthesis and properties of polyurethane/coal-derived carbon foam phase change composites for thermal energy storage[J]. Acta Phys-Chim Sin, 2017, 33(1): 255-261. [42] YIN Y, LIU X, WEI X, et al. Magneticallyaligned Co-C/MWCNTs composite derived from MWCNTs interconnected zeolitic imidazolate frameworks for lightweight and highly efficient electromagnetic wave absorber[J]. ACS Appl Mater Interfaces, 2017: 30850. [43] LIN H, ZHU H, GUO H, et al. Microwave-absorbing properties of Co-filled carbon nanotubes[J]. Mater Res Bull, 2008, 43(10): 2697-2702. [44] QIANG R, DU Y C, CHEN D T, et al. Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67)[J]. J Alloys Compd, 2016, 681: 384-393. |