[1] Liu Y,Lv X,Liu J,et al. Construction of a Selective Fluorescent Probe for GSH Based on a Chloro-Functionalized Coumarin-enone Dye Platform[J]. Chem-Eur J,2015,21(12):4747-4754. [2] Zhang S,Ong C N,Shen H M. Critical Roles of Intracellular Thiols and Calcium in Parthenolide-Induced Apoptosis in Human Colorectal Cancer Cells[J]. Cancer Lett,2004,208(2):0-153. [3] Kristine S J,Rosa E H,Jakob R W. Kinetic and Thermodynamic Aspects of Cellular Thiol Disulfide Redox Regulation[J]. Antioxid Redox Sign,2009,11(5):1047-1058. [4] Tang B,Yin L,Wang X,et al. A Fast-Response, Highly Sensitive and Specific Organoselenium Fluorescent Probe For Thiols and Its Application in Bioimaging[J]. Chem Commun,2009,35:5293-5295. [5] Ng C F,Schafer F Q,Buettner G R,et al. The Rate of Cellular Hydrogen Peroxide Removal Shows Dependency on GSH:Mathematical Insight into in Vivo H2O2 and GPx Concentrations[J]. Free Radical Res Commun,2007,41(11):1201-1211. [6] Anna S C,Sandra G F,Hans S,et al. A Standardized Protocol for Comparable Analysis of GSH/GSSG by UHPLC-ESI-MSMS for Human Plasma[J]. J Chromatogr B,2019,1104:67-72. [7] Song Y L,Li J,Zhou X,et al. Recent Progress on the Development of Glutathione (GSH) Selective Fluorescent and Colorimetric Probes[J]. Coordin Chem Rev,2018,366:29-68. [8] Hong J A,Kim M J,Eo J,et al. A Turn-On Fluorescent Probe for Live-Cell Imaging of Biothiols[J]. Bull Korean Chem Soc,2018,39(4):425-426. [9] Jennifer K N,Prithy R,Toshiro M,et al. In Vitro and ex Vivo Uptake of Glutathione(GSH) Across the Intestinal Epithelium and Fate of Oral GSH after in Vivo Supplementation[J]. J Agric Food Chem,2014,62(39):9499-9506. [10] Ivanov A R,Nazimov I V,Baratova L A. Qualitative and Quantitative Determination of Biologically Active Low-Molecular-Mass Thiols in Human Blood by Reversed-Phase High-Performance Liquid Chromatography with Photometry and Fluorescence Detection[J]. J Chromatogr A,2000,895(1):167-171. [11] Chen G,Zhang L,Wang J. Miniaturized Capillary Electrophoresis System with a Carbon Nanotube Microelectrode for Rapid Separation and Detection of Thiols[J]. Talanta,2004,64(4):1018-1023. [12] Narang J,Chauhan N,Jain P,et al. Silver Nanoparticles/Multiwalled Carbon Nanotube/Polyaniline Film for Amperometric Glutathione Biosensor[J]. Int J Biolog Macromol,2012,50(3):672-678. [13] Yoshida M,Kamiya M,Yamasoba T,et al. A Highly Sensitive, Cell-Membrane-Permeable Fluorescent Probe for Glutathione[J]. Bioorg Med Chem Lett,2014,24(18):4363-4366 [14] Jhong Y,Hsieh W H,Chir J L,et al. A Highly Selective and Turn-on Fluorescence Sensor for Detection of Cyanide[J]. J Fluoresc,2014,24(6):1723-1726. [15] Liu X,Li T,Wu Q,et al. Carbon Nanodots as a Fluorescence Sensor for Rapid and Sensitive Detection of Cr(Ⅵ) and Their Multifunctional Applications[J]. Talanta,2017,165:216-222. [16] Zheng S L,Liu J W,Wu Y Y,et al. Small-Molecule Inhibitors of Wnt Signaling Pathway: Towards Novel Anticancer Therapeutics[J]. Future Med Chem,2015,7(18):2485-2505. [17] Wang H Z,Xiao M J,Zhang J Q,et al. Studies on the Synthesis and Properties of Quinolinone-Based Fluorescent Probe[J]. Acta Sci Nat Univ Sunyatseni,2014,53(2):94-100. [18] Wu L J,Yang Y,Song R J,et al. An Access to 1,3-Azasiline-Fused Quinolinones via Oxidative Heteroannulation Involving Silyl C(sp3)—H Functionalization[J]. Chem Commun,2018,54(21):1367-1370.. [19] Gao Z,Han B,Chen K,et al. A Novel Single-Fluorophore-Based Ratiometric Fluorescent Probe for Direct Detection of Isocyanates in Air[J]. Chem Commun,2017,53(46):6231-6234. [20] Pires M M,Chmielewski J. Fluorescence Imaging of Cellular Glutathione Using a Latent Rhodamine[J]. Org Lett,2008,10(5):837-840. [21] Lee J H,Lim C S,Tian Y S,et al. A Two-Photon Fluorescent Probe for Thiols in Live Cells and Tissues[J]. J Am Chem Soc,2010,132(4):1216-1217. [22] LIU Yawei. Construction of Carbon Heterobonds and Their Application in the Synthesis of Sulfide and Quinazoline Derivatives[D]. Zhengzhou:Henan University,2018(in Chinese). 刘亚威. 碳杂键的构建及其在硫醚和喹唑啉衍生物合成中的应用[D]. 郑州:河南大学,2018. [23] WANG Huizhen. Synthesis and Properties of Quinolinone Fluorescent Probes.Mianyang[D]. Mianyang:Southwest University of Science and Technology,2014(in Chinese). 王会镇. 喹啉酮荧光探针的合成及性能研究[D]. 绵阳: 西南科技大学,2014. [24] YAN Xueming, ZHANG Hongying, ZENG Xiong. Study on Synthesis of Novel Ebselen Analogs[J]. J Univ South China(Sci Technol),2006,20(3):88-90(in Chinese). 颜雪明,张红英,曾雄. 新型Ebselen类似物的合成研究[J]. 南华大学学报(自然科学版),2006,20(3):88-90. [25] YAN Xueming,LU Zhiqiang,YANG Pengfei. Study on the Synthesis of 2-Phenyl-1,2-Benzoisoselazol-3-(2H)-one[J]. Fine Chem Intermed,2005,35(4):22-27(in Chinese). 颜雪明,卢志强,阳鹏飞. 2-苯基-1,2-苯并异硒唑-3-(2H)-酮的合成研究[J]. 精细化工中间体,2005,35(4):22-27. [26] Krishna P B,Govindasamy M. Synthesis, Characterization, and Antioxidant Activity of Some Ebselen Analogues[J]. Chem-Eur J,2007,13:4594-4601. [27] Samanta S,Goswami S,Ramesh A,et al. A New Fluorogenic Probe for Solution and Intra-Cellular Sensing of Trivalent Cations in Model Human Cells[J]. Sens Actuators B,2014,194:120-126. [28] Mugesh G,Sarma B K. Glutathione Peroxidase(GPx)-like Antioxidant Activity of the Organoselenium Drug Ebselen:Unexpected Complications with Thiol Exchange Reactions[J]. J Am Chem Soc,2005,127(32):11477-11485. |