Please wait a minute...
应用化学
今天是
应用化学  2020, Vol. 37 Issue (1): 69-79    DOI: 10.11944/j.issn.1000-0518.2020.01.190121
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
同源细胞膜包覆智能释药纳米粒用于肝癌靶向治疗
夏颖,夏菁,崔洪燕,钱明,张留伟,陈麒先,王静云()
大连理工大学生物工程学院 辽宁 大连 116024
Homologous Cell Membrane Coated Smart Drug-Release Nanoparticles for Targeted Hepatocellular Carcinoma Therapy
XIA Ying,XIA Jing,CUI Hongyan,QIAN Ming,ZHANG Liuwei,CHEN Qixian,WANG Jingyun()
School of Bioengineering,Dalian University of Technology,Dalian,Liaoning 116024,China
全文: PDF(2825 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

近年来,纳米药物递送系统在癌症治疗方面的应用受到广泛关注。 传统的纳米药物递送系统存在生物相容性差、靶向性缺乏、在肿瘤部位释药缓慢等问题。 本文设计制备了一种同源细胞膜(M)包覆、癌细胞还原微环境控制释药的脂质体纳米粒子(命名为P-ss-G/D/Sf@M)来递送肝癌治疗药物索拉非尼(Sf)用于肝癌的靶向治疗。 利用薄膜水化法结合静电吸附及过膜挤压法制备包覆细胞膜的空白(P-ss-G/D@M)及载药(P-ss-G/D/Sf@M)纳米粒子。 P-ss-G/D/Sf@M对Sf的载药量为7.2%,包封率为79.9%。 体外释药结果显示,P-ss-G/D/Sf@M在还原条件下会加快药物的释放,48 h时药物释放量达到65%以上,较非还原条件下释药量提高了25%。 体外细胞实验结果证明,包覆肝癌细胞膜的纳米粒子更易被肝癌细胞摄取,表现了对肝癌细胞的靶向性,同时在肿瘤细胞高浓度谷胱甘肽(GSH)还原环境作用下,纳米粒子中的二硫键断裂,迅速释放药物,与非还原敏感载药纳米粒子相比,显著抑制肝癌细胞生长,提高细胞凋亡率。 因此,本文制备的同源细胞膜包覆的智能释药载体有可能用于今后的癌症治疗中。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏颖
夏菁
崔洪燕
钱明
张留伟
陈麒先
王静云
关键词 细胞膜靶向谷胱甘肽响应脂质体聚乳酸-羟基乙酸索拉非尼    
Abstract

Nanoparticle drug delivery system has played an important role in enhancing the efficacy of traditional chemotherapy drugs in recent years. However, the main challenges faced by conventional nanoparticle include poor biocompatibility, low specific targeting and slow drug release in target sites. In this work, we fabricated an efficient hepatocellular carcinoma-targeting liposome system functionalized with a redox-cleavable and homologous cell membrane(M)-targeting. The blank (P-ss-G/D@M) and drug-loaded (P-ss-G/D/Sf@M) nanoparticles coated with cell membrane were prepared by thin-film hydration method combined with electrostatic adsorption and membrane extrusion. The drug-loading amount of sorafenib was 7.2%, and the encapsulation efficiency was 79.9%. The results of in vitro drug release showed that P-ss-G/D/Sf@M accelerated drug release under reducing conditions, and the drug release rate was more than 65% at 48 hours, which was 25% higher than that under non-reducing conditions. In vitro study demonstrated that nanoparticles coated with hepatoma cell membrane were more easily taken into hepatoma cells, showing the targeting of hepatocellular carcinoma. At the same time, the disulfide bonds in the nanoparticles broke and drugs were rapidly released under the high concentration of glutathione (GSH) in the tumor cells. Compared with non-reducing sensitive drug-loaded nanoparticles, P-ss-G/D/Sf@M could significantly inhibit the growth of hepatoma cells (Hep-G2) and increase the apoptosis rate of hepatoma cells. Therefore, the homologous cell membrane-coated smart drug delivery carrier prepared herein is likely to be used to treat hepatocellular carcinoma in future.

Key wordscell membrane targeting    glutathione-response    liposomes    poly(lactic-co-glycolic acid)    sorafenib
收稿日期: 2019-04-22           接受日期: 2019-04-22
基金资助:国家自然科学基金项目(21878041)资助
通讯作者: 王静云     E-mail: wangjingyun67@dlut.edu.cn
引用本文:   
夏颖, 夏菁, 崔洪燕, 钱明, 张留伟, 陈麒先, 王静云. 同源细胞膜包覆智能释药纳米粒用于肝癌靶向治疗[J]. 应用化学, 2020, 37(1): 69-79.
XIA Ying, XIA Jing, CUI Hongyan, QIAN Ming, ZHANG Liuwei, CHEN Qixian, WANG Jingyun. Homologous Cell Membrane Coated Smart Drug-Release Nanoparticles for Targeted Hepatocellular Carcinoma Therapy. Chinese Journal of Applied Chemistry, 2020, 37(1): 69-79.
链接本文:  
http://yyhx.ciac.jl.cn/CN/10.11944/j.issn.1000-0518.2020.01.190121      或      http://yyhx.ciac.jl.cn/CN/Y2020/V37/I1/69
图1同源细胞膜靶向的还原响应释药纳米递送系统示意图
Fig.1Schematic illustration of homologous membrane-targeted reduction-responsive release drug delivery system(P-ss-G/D/Sf@M nanoparticles)
Scheme 1The synthesis routes of P-ss-G and P-G
图2P-ss-G的核磁共振氢谱(A)和红外图谱(B)
Fig.21H NMR(A) and FT-IR(B) spectra of P-ss-G
图3P-ss-G/D和P-ss-G/D@M的(A)粒径变化、(B)电位变化、(C)透射电子显微镜图和(D)SDS-PAGE凝胶电泳分析((I)P-ss-G/D、(II)Hep-G2细胞膜以及(III)P-ss-G/D@M(Hep-G2) )
Fig.3(A)Size, (B)Zeta potential, (C)TEM images of P-ss-G/D and P-ss-G/D@M, (D)SDS-PAGE analysis of (I)P-ss-G/D, (II)Hep-G2 cell membrane and (III)P-ss-G/D@M(Hep-G2)
Sample Size/nm PDI Zeta potential/mV EE/% DL/%
P-ss-G/D 118.2±1.79 0.120±0.024 + 48.7±3.22 - -
P-ss-G/D@M 140.2±2.66 0.278±0.026 - 27.3±1.35 - -
P-ss-G/D/Sf 121.6±0.48 0.160±0.016 + 48.3±0.55 79.9±0.0007 7.2±0.0007
P-ss-G/D/Sf@M 153.5±3.72 0.224±0.017 - 28.5±0.95 79.9±0.0007 7.2±0.0007
表1不同纳米粒子理化性质
Table 1Physiochemical characterization of different nanoparticles
图4P-ss-G/D/Sf@M和P-G/D/Sf@M在含有10 mmol/L GSH以及不含GSH的溶液中Sf的累积释放情况
Fig.4The drug release profiles of P-ss-G/D/Sf@M and P-G/D/Sf@M in absence or presence of 10 mmol/L GSH
图5纳米粒子的细胞摄取情况。(A)激光共聚焦显微镜成像和(B)流式细胞仪分析包覆不同细胞膜((I)Hep-G2, (II)COS-7, (III)MCF-7, (IV)HeLa细胞)载药纳米粒子在Hep-G2细胞中的摄取情况。(C)激光共聚焦显微镜成像和(D)流式细胞仪分析Hep-G2 和COS-7细胞对于P-ss-G/D/DOX@M(Hep-G2)纳米粒子的摄取情况
Fig.5Cellular uptake of nanoparticles. (A)CLSM image and (B)flow cytometry profiles of nanoparticles with different cell membrane ((I)Hep-G2, (II)COS-7, (III)MCF-7and (IV)HeLa cells) coincubation with Hep-G2 cells. (C)CLSM image and (D)flow cytometry profiles of Hep-G2 cell and COS-7 cell incubated with P-ss-G/D/DOX@M(Hep-G2)
图6不同细胞微环境对包覆细胞膜纳米粒子释药行为的影响。(A)激光共聚焦显微镜成像和(B)流式细胞仪分析 (I)P-ss-G/D/DOX@M(Hep-G2)和(II)P-G/D/DOX@M(Hep-G2)载药纳米粒子在Hep-G2细胞中的摄取情况。(C)激光共聚焦显微镜成像和(D)流式细胞仪分析 (I)P-ss-G/D/DOXf@M(COS-7)和(II)P-G/D/DOX@M(COS-7)载药纳米粒子在COS-7细胞中的摄取情况
Fig.6(A)CLSM image and (B)flow cytometry profiles of (I)P-ss-G/D/DOX@M(Hep-G2) and (II)P-G/D/DOX@M(Hep-G2) nanoparticles coincubation with Hep-G2 cell. (C)CLSM image and (D)flow cytometry profiles of (I)P-ss-G/D/DOX@M(COS-7) and (II)P-G/D/DOX@M(COS-7) coincubation with COS-7 cell
图7纳米粒子的体外抗肝癌效果。(A)纳米粒子和载药纳米粒子作用于Hep-G2细胞后的细胞毒性。(B)流式细胞术分析载药纳米粒子诱导的Hep-G2细胞凋亡水平
Fig.7Anti-tumor effect of nanoparticles. (A)The cytotoxic profiles of nanoparticles and Sf-loaded nanoparticles against Hep-G2 cell. (B)Flow cytometric analysis of Hep-G2 cell apoptosis after coincubation with Sf-loaded nanoparticles
[1] Nakano M,Tanaka M,Kuromatsu R,et al. Sorafenib for the Treatment of Advanced Hepatocellular Carcinoma with Extrahepatic Metastasis:A Prospective Multicenter Cohort Study[J]. Cancer Med-US,2015,4(12):1836-1843.
[2] Tom G,Philip S,Isaac R,et al. Preparation of an Efficient and Safe Polymeric-Magnetic Nanoparticle Delivery System for Sorafenib in Hepatocellular Carcinoma[J]. Life Sci,2018,206:10-21.
[3] Kalyane D,Raval N,Maheshwari R,et al. Employment of Enhanced Permeability and Retention Effect(EPR):Nanoparticle-Based Precision Tools for Targeting of Therapeutic and Diagnostic Agent in Cancer[J]. Mater Sci Eng C,2019,98:1252-1276.
[4] Chao L,Yu C,Yi X,et al. Nanoparticle-Mediated Internal Radioisotope Therapy to Locally Increase the Tumor Vasculature Permeability for Synergistically Improved Cancer Therapies[J]. Biomaterials,2019,197:368-379.
[5] HAN Xu,DING Guanyu,DONG Qing,et al. Research Progress of Nano-Gene Carriers Based on Liposomes[J]. Chinese J Appl Chem,2018,35(7):735-744(in Chinese). 韩旭,丁冠宇,董青,等. 基于脂质体的纳米基因载体的研究进展[J]. 应用化学,2018,35(7):735-744.
[6] Sawant R R,Torchilin V P.Challenges in Development of Targeted Liposomal Therapeutics[J]. AAPS J,2012,14(2):303-315.
[7] Singh B,Jang Y,Maharjan S,et al. Combination Therapy with Doxorubicin-Loaded Galactosylated Poly(ethyleneglycol)-Lithocholic Acid to Suppress the Tumor Growth in an Orthotopic Mouse Model of Liver Cancer[J]. Biomaterials,2017,116:130-144.
[8] Bertrand N,Wu J,Xu X Y,et al. Cancer Nanotechnology:The Impact of Passive and Active Targeting in the Era of Modern Cancer Biology[J]. Adv Drug Deliver Rev,2014,66:2-25.
[9] Saei A A,Yazdani M,Lohse S E,et al. Nanoparticle Surface Functionality Dictates Cellular and Systemic Toxicity[J]. Chem Mater,2017,29(16):6578-6595.
[10] Vijayan V,Uthaman S,Park I K.Cell Membrane-Camouflaged Nanoparticles:A Promising Biomimetic Strategy for Cancer Theragnostics[J]. Polymers(Basel Switz),2018,10(9):1374-1399.
[11] Zhen X,Cheng P,Pu K.Recent Advances in Cell Membrane-Camouflaged Nanoparticles for Cancer Phototherapy[J]. Small,2019,15(1):1804105.
[12] Sun H P,Su J H,Meng Q S,et al. Cancer-Cell-Biomimetic Nanoparticles for Targeted Therapy of Homotypic Tumors[J]. Adv Mater,2016,28(43):9581-9588.
[13] Zhu J Y,Zheng D W,Zhang M K,et al. Preferential Cancer Cell Self-recognition and Tumor Self-targeting by Coating Nanoparticles with Homotypic Cancer Cell Membrane[J]. Nano Lett,2016,16(9):5895-5901.
[14] Lv Y L,Liu M,Zhang Y,et al. Cancer Cell Membrane-Biomimetic Nanoprobes with Two-Photon Excitation and Near-Infrared Emission for Intravital Tumor Fluorescence Imaging[J]. ACS Nano,2018,12(2):1350-1358.
[15] Ma K,Fu D,Liu Y J,et al. Cancer Cell Targeting, Controlled Drug Release and Intracellular Fate of Biomimetic Membrane-Encapsulated Drug-Loaded Nano-Graphene Oxide Nanohybrids[J]. J Mater Chem B,2018,6(31):5080-5090.
[16] Jin J F,Krishnamachary B,Barnett J D,et al. Human Cancer Cell Membrane-Coated Biomimetic Nanoparticles Reduce Fibroblast-Mediated Invasion and Metastasis and Induce T-Cells[J]. ACS Appl Mater Interfaces,2019,11(8):7850-7861.
[17] Liu C M,Chen G B,Chen H H,et al. Cancer Cell Membrane-Cloaked Mesoporous Silica Nanoparticles with a pH-Sensitive Gatekeeper for Cancer Treatment[J]. Colloids Surf,B,2019,175:477-486.
[18] Li S Y,Cheng H,Qiu W X,et al. Cancer Cell Membrane-Coated Biomimetic Platform for Tumor Targeted Photodynamic Therapy and Hypoxia-Amplified Bioreductive Therapy[J]. Biomaterials,2017,142:149-161.
[19] Miao J,Yang X Q,Gao Z,et al. Redox-Responsive Chitosan Oligosaccharide-SS-Octadecylamine Polymeric Carrier for Efficient Anti-Hepatitis B Virus Gene Therapy[J]. Carbohydr Polym,2019,212:215-221.
[20] Raza A,Hayat U,Rasheed T,et al. Redox-Responsive Nano-Carriers as Tumor-Targeted Drug Delivery Systems[J]. Eur J Med Chem,2018,157:705-715.
[21] Gilbert H F.Thiol/Disulfide Exchange Equilibria and Disulfide Bond Stability[J]. Method Enzymol,1995,251:8-28.
[22] ZHANG Yi,WU Lingbo,HU Qian,et al. Functionally Modified Hyperbranched Polyglycerols for Drug Delivery[J]. Chinese J Appl Chem,2015,32(4):367-378(in Chinese). 张奕,巫凌波,胡倩,等. 功能化修饰的超支化聚缩水甘油醚在药物载体领域的应用[J]. 应用化学,2015,32(4):367-378.
[23] Mo R,Gu Z.Tumor Microenvironment and Intracellular Signal-Activated Nanomaterials for Anticancer Drug Delivery[J]. Mater Today,2016,19(5):274-283.
[24] Feng S S,Wu Z X,Zhao Z Y,et al. Engineering of Bone- and CD44-Dual-Targeting Redox-Sensitive Liposomes for the Treatment of Orthotopic Osteosarcoma[J]. ACS Appl Mater Interfaces,2019,11(7):7357-7368.
[25] Zhang L S,Liu Y C,Zhang K,et al. Redox-Responsive Comparison of Diselenide Micelles with Disulfide Micelles[J]. Colloid Polym Sci,2019,297(2):225-238.
[26] Chen L L,Wang X H,Ji F L,et al. New Bifunctional-Pullulan-Based Micelles with Good Biocompatibility for Efficient Co-delivery of Cancer-Suppressing p53 Gene and Doxorubicin to Cancer Cells[J]. RSC Adv,2015,5(115):94719-94731.
[1] 韩旭, 丁冠宇, 董青, 李云辉, 杨秀云, 李丹, 杜衍, 汪尔康. 基于脂质体的纳米基因载体的研究进展[J]. 应用化学, 2018, 35(7): 735-744.
[2] 简勇, 丁茹, 刘舒, 刘忠英, 宋凤瑞, 刘志强. 刺五加叶黄酮脂质体和滴丸的药动学差异比较[J]. 应用化学, 2017, 34(1): 118-122.
[3] 索志荣, 张尊听, 郑建斌. 染料木素磺酸钠制备及其抗脂质过氧化作用[J]. 应用化学, 2005, 22(10): 1083-1086.
[4] 吴道澄, 徐梁, 张学庸. 油酰丝裂霉素及其脂质体的合成与抗肿瘤活性[J]. 应用化学, 1994, 0(5): 98-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
 Chinese Journal of Applied Chemistry
地址:长春市人民大街5625号 邮编:130022
电话:0431-85262016 85262330 传真:0431-85685653 E-mail: yyhx@ciac.ac.cn