[1] Wang H F,Wu Y Y,Yan X P. Room-Temperature Phosphorescent Discrimination of Catechol from Resorcinol and Hydroquinone Based on Sodium Tripolyphosphate Capped Mn-Doped ZnS Quantum Dots[J]. Anal Chem,2013,85(3):1920-1925. [2] Chen T T,Xu J Q,Arsalan M,et al. Controlled Synthesis of Au@Pd Core-Shell Nanocomposites and their Application for Electrochemical Sensing of Hydroquinone[J]. Talanta,2019,198:78-85. [3] Huang D L,Wang J,Cheng F,et al. Synergistic Effect of a Cobalt Fluoroporphyrin and Graphene Oxide on the Simultaneous Voltammetric Determination of Catechol and Hydroquinone[J]. Microchim Acta,2019,186(6):1-11. [4] Marrubini G,Calleri E,Coccini T,et al. Direct Analysis of Phenol, Catechol and Hydroquinone in Human Urine by Coupled-Column HPLC with Fluorimetric Detection[J]. Chromatographia,2005,62(1/2):25-31. [5] Xie T Y,Liu Q W,Shi Y R,et al. Simultaneous Determination of Positional Isomers of Benzenediols by Capillary Zone Electrophoresis with Square Wave Amperometric detection[J]. J Chromatogr A,2006,1109(2):317-321. [6] Liu J,Lin Z. Simultaneous Determination of Mixed Phenol, Catechol, and Quinol by Double Fourier Transform Filtering and Second Ratio Spectra Derivative Spectrophotometry[J]. Spectrosc Spectr Anal,2000,20(4):480-483. [7] Cui H,Zhang Q L,Myint A,et al. Chemiluminescence of Cerium(IV)-Rhodamine 6G-Phenolic Compound System[J]. J Photochem Photobiol A,2006,181(2/3):238-245. [8] Chen T W,Yu X N,Li S J. Simultaneous Determination of Dihydroxybenzene Isomers Using Glass Carbon Electrode Modified with 3D CNT-Graphene Decorated with Au Nanoparticles[J]. Int J Electrochem Sc,2019,14(8):7037-7046. [9] Yang S Y,Yang M,Liu Q Y,et al. An Ultrasensitive Electrochemical Sensor Based on Multiwalled Carbon Nanotube@Reduced Graphene Oxide Nanoribbon Composite for Simultaneous Determination of Hydroquinone, Catechol and Resorcinol[J]. J Electrochem Soc,2019,166(6):B547-B553. [10] Zhao C,Song J F,Zhang J C. Determination of Total Phenols in Environmental Wastewater by Flow-Injection Analysis with a Biamperometric Detector[J]. Anal Bioanal Chem,2002,374(3):498-504. [11] WANG Zhongteng,LIU Hanhan,TENG Hui,et al. A Voltammetric Sensor Based on Graphene-Gold Nanocomposite Film for Simultaneous Determination of Hydroquinone and Catechol[J]. J Anhui Sci Tech Univ,2018,32(5):64-72(in Chinese). 王中腾,刘寒寒,滕辉,等. 石墨烯/纳米金复合修饰电极对邻苯二酚和对苯二酚的同时测定[J]. 安徽科技学院学报,2018,32(5):64-72. [12] FU Ju,TAN Xiaohong,SONG Xinjian. Polypyrimidine/Graphene Composite Film Modified Electrode for the Simultaneous Detection of Catechol and Hydroquinone[J]. J Hubei Univ Nationnalities(Nat Sci Edn),2016,34(2):195-198(in Chinese). 付菊,谭小红,宋新建. 聚嘧啶/石墨烯复合膜修饰电极的制备及其用于邻苯二酚和对苯二酚的同时检测[J]. 湖北民族学院学报(自然科学版),2016,34(2):195-198. [13] Zhao L,Yu J,Yue S Z,et al. Nickel Oxide/Carbon Nanotube Nanocomposites Prepared by Atomic Layer Deposition for Electrochemical Sensing of Hydroquinone and Catechol[J]. J Electroanal Chem,2018,808:245-251. [14] Alshahrani L A,Miao L Q,Zhang Y Y,et al. 3D-Flower-Like Copper Sulfide Nanoflake-Decorated Carbon Nanofragments-Modified Glassy Carbon Electrodes for Simultaneous Electrocatalytic Sensing of Coexisting Hydroquinone and Catechol[J]. Sensors,2019,19(10):1-12. [15] Bozkurt G,Bayrakceken A,Ozer A K. Synthesis and Characterization of CuO at Nanoscale[J]. Appl Surf Sci,2014,318:244-250. [16] Khanna P K,Gaikwad S,Adhyapak R,et al. Synthesis and Characterization of Copper Nanoparticles[J]. Mater Lett,2007,61(25):4711-4714. [17] Teng F,Yao W Q,Zheng Y F,et al. Synthesis of Flower-like CuO Nanostructures as a Sensitive Sensor for Catalysis[J]. Sens Actuators B,2008,134(2):761-768. [18] Patil S A,Patil L A,Patil D R,et al. CuO-Modified Tin Titanate Thick Film Resistors as H2-Gas Sensors[J]. Sens Actuators B,2007,123(1):233-239. [19] Xiang J Y,Tu J P,Huang X H,et al. A Comparison of Anodically Grown CuO Nanotube Film and Cu2O Film as Anodes for Lithium Ion Batteries[J]. J Solid State Electrochem,2008,12(7/8):941-945. [20] Alizadeh T,Mirzagholipur S. A Nafion-Free Non-Enzymatic Amperometric Glucose Sensor Based on Copper Oxide Nanoparticles-Graphene Nanocomposite[J]. Sens Actuators B,2014,198:438-447. [21] Wang H,Xu J Z,Zhu J J,et al. Preparation of CuO Nanoparticles by Microwave Irradiation[J]. J Cryst Growth,2002,244(1):88-94. [22] Suzuki K,Tanaka N,Ando A,et al. Size-Selected Copper Oxide Nanoparticles Synthesized by Laser Ablation[J]. J Nanopart Res,2012,14(5):1-11. [23] Kumar R V,Diamant Y,Gedanken A. Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates[J]. Chem Mater,2000,12(8):2301-2305. [24] Zhu J W,Li D,Chen H Q,et al. Highly Dispersed CuO Nanoparticles Prepared by a Novel Quick-Precipitation Method[J]. Mater Lett,2004,58(26):3324-3327. [25] Arvand M,Ardaki M S,Zanjanchi M A. A New Sensing Platform Based on Electrospun Copper Oxide/Ionic Liquid Nanocomposite for Selective Determination of Risperidone[J]. RSC Adv,2015,5(51):40578-40587. [26] LUO Yunfeng,LIU Baoshuang,LI Chunxiang. All Solid-State Calcium Ion Selective Electrode Based on Carbon Nanotube/Ag/MoS2 Transducer[J]. Chinese J Appl Chem,2019,36(6):704-710(in Chinese). 罗云凤,刘保双,李春香. 基于碳纳米管/Ag/MoS2转导层的全固态钙离子选择电极[J]. 应用化学,2019,36(6):704-710. [27] XU Siyuan,LEI Ping,JIN Guanping. Determination of Pb(Ⅱ), Cd(Ⅱ) with Melamine Chelating Resin/Multi-walled Carbon Nanotubes Composites Modified Waxed Graphite Electrode[J]. Chinese J Appl Chem,2014,31(2):206-211(in Chinese). 徐思远,雷平,晋冠平. 三聚氰胺基螯合树脂/碳纳米管修饰充蜡石墨电极阳极溶出伏安法测定铅和镉[J]. 应用化学,2014,31(2):206-211. [28] YU Hao,ZHENG Xiaochen,LIU Rantong,et al. Preparation of Copper-iron Hexacyanoferrate Loaded Multi-walled Carbon Nanotubes Modified Electrode for the Determination of Nitrite[J]. Chinese J Appl Chem,2014,31(11):1336-1344(in Chinese). 于浩,郑笑晨,刘冉彤,等.多壁碳纳米管负载铁氰化铜-铁修饰电极的制备及对亚硝酸根的测定[J]. 应用化学,2014,31(11):1336-1344. [29] MENG Kuikui,CUO Jialing,YUN Yangfang,et al. Simultaneous Sensitive Determination of Catechol and Hydroquinone at Gold Nanoparticles Modified Glassy Carbon Electrode[J]. Chem Res Appl,2018,30(3):432-436(in Chinese). 孟奎奎,郭珈玲,云阳方,等. 邻苯二酚和对苯二酚在金纳米修饰玻碳电极(GNP/GCE) 上的同时灵敏检测[J]. 化学研究与应用,2018,30(3):432-436. [30] Zhang H Q,Huang Y H,Hu S R,et al. Self-assembly of Graphitic Carbon Nitride Nanosheets-Carbon Nanotube Composite for Electrochemical Simultaneous Determination of Catechol and Hydroquinone[J]. Electrochim Acta,2015,176:28-35. [31] Hu F X,Chen S H,Wang C Y,et al. Study on the Application of Reduced Graphene Oxide and Multiwall Carbon Nanotubes Hybrid Materials for Simultaneous Determination of Catechol, Hydroquinone, p-Cresol and Nitrite[J]. Anal Chim Acta,2012,724:40-46. [32] Goulart L A,Goncalves R,Correa A A,et al. Synergic Effect of Silver Nanoparticles and Carbon Nanotubes on the Simultaneous Voltammetric Determination of Hydroquinone, Catechol, Bisphenol A and Phenol[J]. Microchim Acta,2017,185(1):1-9. [33] WAN Qijin,LIAO Hualing,LIU Yi,et al. Simultaneous Determination of Catechol and Hydroquinpne in Graphene Modified Electrode[J]. J Wuhan Inst Tech,2013,35(2):16-23(in Chinese). 万其进,廖华玲,刘义,等. 石墨烯修饰电极同时测定邻苯二酚和对苯二酚[J]. 武汉工程大学学报,2013,35(2):16-23. |