[1] | Lindley D.The Energy Should Always Work Twice[J]. Nature,2009,458(7235):138-141. | [2] | GUO Wei,JIANG Lei.Energy Harvesting with Bio-Inspired Synthetic Nanochannels[J]. Sci China(Chem),2011,(8):1257-1270(in Chinese). 郭维,江雷. 基于仿生智能纳米孔道的先进能源转换体系[J]. 中国科学:化学,2011,(8):1257-1270. | [3] | Loeb S,Norman R S.Osmotic Power Plants[J]. Science,1975,189(4203):654-655. | [4] | Van Der Heyden F H J,Stein D,Dekker C. Streaming Currents in a Single Nanofluidic Channel[J]. Phys Rev Lett,2005,95(11):116104-116107. | [5] | Daiguji H,Yang P D,Szeri A J,et al. Electrochemomechanical Energy Conversion in Nanofluidic Channels[J]. Nano Lett,2004,4(12):2315-2321. | [6] | Sheng Z Z,Liu X,Min L L,et al. Bioinspired Approaches for Medical Devices[J]. Chinese Chem Lett,2017,28(6):1131-1134. | [7] | Catania K.The Shocking Predatory Strike of the Electric Eel[J]. Science,2014,346(6214):1231-1234. | [8] | Traeger L L,Sabat G,Barrett-Wilt G A,et al. A Tail of Two Voltages:Proteomic Comparison of the Three Electric Organs of the Electric Eel[J]. Sci Adv,2017,3:e1700523. | [9] | Hou X.Smart Gating Multi-Scale Pore/Channel-Based Membranes[J]. Adv Mater,2016,28(33):7049-7064. | [10] | Hou X,Guo W,Jiang L.Biomimetic Smart Nanopores and Nanochannels[J]. Chem Soc Rev,2011,40(5):2385-2401. | [11] | Zaino L P,Contento N M,Branagan S P,et al. Coupled Electrokinetic Transport and Electron Transfer at Annular Nanoband Electrodes Embedded in Cylindrical Nanopores[J]. ChemElectroChem,2014,1(9):1570-1576. | [12] | Yeh H C,Wang M,Chang C C,et al. Fundamentals and Modeling of Electrokinetic Transport in Nanochannels[J]. Isr J Chem,2014,54(11/12):1533-1555. | [13] | Xie Y B,Wang X,Xue J,et al. Electric Energy Generation in Single Track-etched Nanopores[J]. Appl Phys Lett,2008,93(16):163116. | [14] | Jia Z,Wang B,Song S,et al. Blue Energy: Current Technologies for Sustainable Power Generation from Water Salinity Gradient[J]. Renew Sustain Energy Rev,2014,31:91-100. | [15] | HOU Xu,JIANG Lei.Recent Studies of Biomimetic Smart Single Nanochannels[J]. Physics,2011,40(5):304-310(in Chinese). 侯旭,江雷. 仿生智能单纳米通道的研究进展[J]. 物理,2011,40(5):304-310. | [16] | Jung W,Kim J,Kim S,et al. A Novel Fabrication of 3.6 nm High Graphene Nanochannels for Ultrafast Ion Transport[J]. Adv Mater,2017,29(17):1605854. | [17] | Ying C F,Zhang Y C,Feng Y X,et al. 3D Nanopore Shape Control by Current-stimulus Dielectric Breakdown[J]. Appl Phys Lett,2016,109(6):063105. | [18] | Xiao K,Wen L,Jiang L.Biomimetic Solid-State Nanochannels:From Fundamental Research to Practical Applications[J]. Small,2016,12(21):2810-2831. | [19] | Suk M E,Aluru N R.Ion Transport in Sub-5-nm Graphene Nanopores[J]. J Chem Phys,2014,140(8):084707. | [20] | Lv W,Liu S,Li X,et al. Spatial Blockage of Ionic Current for Electrophoretic Translocation of DNA Through a Graphene Nanopore[J]. Electrophoresis,2014,35(8):1144-1151. | [21] | Qiu W Z,Lv Y,Du Y,et al .Composite Nanofiltration Membranes via the Co-deposition and Cross-linking of Catechol/Polyethylenimine[J]. RSC Adv,2016,6:34096-341020. | [22] | Zhuang T,Tamm L K.Control of the Conductance of Engineered Protein Nanopores Through Concerted Loop Motions[J]. Angew Chem,2014,126(23):6007-6012. | [23] | Bell N A W,Keyser U F. Nanopores Formed by DNA Origami:A Review[J]. FEBS Lett,2014,588(19):3564-3570. | [24] | Kowalczyk S W,Blosser T R,Dekker C.Biomimetic Nanopores:Learning from and about Nature[J]. Trends Biotechnol,2011,29(12):607-614. | [25] | Li J,Stein D,Mcmullan C,et al. Ion Beam Sculpting on the Nanoscale[J]. Nature,2001,412:166-169. | [26] | Fox D S,Maguire P,Zhou Y,et al. Sub-5 nm Graphene Nanopore Fabrication by Nitrogen Ion Etching Induced by a Low-energy Electron Beam[J]. Nanotechnology,2016,27(19):195302. | [27] | Goyal G,Lee Y B,Darvish A,et al. Hydrophilic and Size-controlled Graphene Nanopores for Protein Detection[J]. Nanotechnology,2016,27(49):495301. | [28] | Choi S S,Park M J,Yamaguchi T,et al. Fabrication of Nanopore on Electron Beam Induced Membrane for Single Molecule Analysis[J]. ECS Trans,2016,75(16):281-287. | [29] | Liebes-Peer Y,Bandalo V,Sökmen Ü,et al. Fabrication of Nanopores in Multi-layered Silicon-based Membranes Using Focused Electron Beam Induced Etching with XeF2 Gas[J]. Microchim Acta,2016,183(3):987-994. | [30] | Yuan J H,He F Y,And D C S,et al. A Simple Method for Preparation of Through-Hole Porous Anodic Alumina Membrane[J]. Chem Mater,2004,16(10):1841-1844. | [31] | Burham N,Hamzah A A,Yunas J,et al. Electrochemically Etched Nanoporous Silicon Membrane for Separation of Biological Molecules in Mixture[J]. J Micromech Microeng,2017,27(7):075021. | [32] | Huh D,Mills K L,Zhu X,et al. Tuneable Elastomeric Nanochannels for Nanofluidic Manipulation[J]. Nat Mater,2007,6(6):424-428. | [33] | Liu L,Yang C,Zhao K,et al. Ultrashort Single-walled Carbon Nanotubes in a Lipid Bilayer as a New Nanopore Sensor[J]. Nat Commun,2013,4:2989. | [34] | Branton D,Deamer D W,Marziali A,et al. The Potential and Challenges of Nanopore Sequencing[J]. Nat Biotech,2008,26(10):1146-1153. | [35] | Kang X F,Cheley S,Rice-Ficht A C,et al. A Storable Encapsulated Bilayer Chip Containing a Single Protein Nanopore[J]. J Am Chem Soc,2007,129(15):4701-4705. | [36] | Burns J R,Stulz E,Howorka S.Self-Assembled DNA Nanopores that Span Lipid Bilayers[J]. Nano Lett,2013,13(6):2351-2356. | [37] | Chen Q,Wang Y F,Deng T,et al. SEM-induced Shrinkage and Site-selective Modification of Single-Crystal Silicon Nanopores[J]. Nanotechnology,2017,28(30):305301. | [38] | Zhang B,Zhang A,White H S.The Nanopore Electrode[J]. Anal Chem,2004,76(21):6229-6238. | [39] | Apel P.Track Etching Technique in Membrane Technology[J]. Radiat Meas,2001,34(1):559-566. | [40] | Hou X,Dong H,Zhu D,et al. Fabrication of Stable Single Nanochannels with Controllable Ionic Rectification[J]. Small,2010,6(3):361-365. | [41] | Xia F,Guo W,Mao Y,et al. Gating of Single Synthetic Nanopores by Proton-Driven DNA Molecular Motors[J]. J Am Chem Soc,2008,130(26):8345-8350. | [42] | Vlassiouk I,Siwy Z S.Nanofluidic Diode[J]. Nano Lett,2007,7(3):552-556. | [43] | Cai S L,Zhang L X,Zhang K,et al. A Single Glass Conical Nanopore Channel Modified with 6-Carboxymethyl-chitosan to Study the Binding of Bovine Serum Albumin due to Hydrophobic and Hydrophilic Interactions[J]. Microchim Acta,2016,183(3):981-986. | [44] | Ali M,Yameen B,Neumann R,et al. Biosensing and Supramolecular Bioconjugation in Single Conical Polymer Nanochannels. Facile Incorporation of Biorecognition Elements into Nanoconfined Geometries[J]. J Am Chem Soc,2008,130(48):16351-16357. | [45] | Pérez-Mitta G,Burr L,Tuninetti J S,et al. Noncovalent Functionalization of Solid-state Nanopores via Self-assembly of Amphipols[J]. Nanoscale,2016,8(3):1470-1478. | [46] | Ali M,Yameen B,Cervera J,et al. Layer-by-layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-state Nanopores:Insights from Theory and Experiment[J]. J Am Chem Soc,2010,132(24):8338-8348. | [47] | Hou X,Liu Y,Dong H,et al. A pH-gating Ionic Transport Nanodevice:Asymmetric Chemical Modification of Single Nanochannels[J]. Adv Mater,2010,22(22):2440-2443. | [48] | Chen Y C,Xie R,Yang M,et al. Gating Characteristics of Thermo-Responsive Membranes with Grafted Linear and Crosslinked Poly(N-isopropylacrylamide) Gates[J]. Chem Eng Technol,2010,32(4):622-631. | [49] | Tero R,Yamashita R,Hashizume H,et al. Nanopore Formation Process in Artificial Cell Membrane Induced by Plasma-generated Reactive Oxygen Species[J]. Arch Biochem Biophys,2016,605:26-33. | [50] | Guo W,Xia H,Xia F,et al. Current Rectification in Temperature-Responsive Single Nanopores[J]. Chem Phys Chem,2010,11(4):859-864. | [51] | Kalman E B,Sudre O,Vlassiouk I,et al. Control of Ionic Transport Through Gated Single Conical Nanopores[J]. Anal Bioanal Chem,2009,394(2):413-419. | [52] | Siwy Z S.Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry[J]. Adv Funct Mater,2006,16(6):735-746. | [53] | Dekker C.Solid-state Nanopores[J]. Nat Nanotechnol,2007,2(4):209-215. | [54] | Vlassiouk I,Smirnov S,Siwy Z.Ionic Selectivity of Single Nanochannels[J]. Nano Lett,2008,8(7):1978-1985. | [55] | Levine S,Marriott J R,Neale G,et al. Theory of Electrokinetic Flow in Fine Cylindrical Capillaries at High Zeta-potentials[J]. J Colloid Interface Sci,1975,52(1):136-149. | [56] | Ai Y,Qian S.Direct Numerical Simulation of Electrokinetic Translocation of a Cylindrical Particle Through a Nanopore Using a Poisson Boltzmann Approach[J]. Electrophoresis,2011,32(9):996-1005. | [57] | Yang J,Lu F,Kostiuk L W,et al. Electrokinetic Microchannel Battery by Means of Electrokinetic and Microfluidic Phenomena[J]. J Micromech Microeng,2003,13(6):963-970. | [58] | Olthuis W,Schippers B,Eijkel J,et al. Energy from Streaming Current and Potential[J]. Sens Actuators B,2005,111:385-389. | [59] | Fievet P,Sbaï M,Szymczyk A,et al. Determining the ζ-Potential of Plane Membranes from Tangential Streaming Potential Measurements:Effect of the Membrane Body Conductance[J]. J Membr Sci,2003,226(1):227-236. | [60] | Yaroshchuk A,Ribitsch V.Role of Channel Wall Conductance in the Determination of ζ-Potential from Electrokinetic Measurements[J]. Langmuir,2002,18(6):2036-2038. | [61] | Werner C,Zimmermann R,Kratzmüller T.Streaming Potential and Streaming Current Measurements at Planar Solid/Liquid Interfaces for Simultaneous Determination of Zeta Potential and Surface Conductivity[J]. Colloids Surf A,2001,192(1/2/3):205-213. | [62] | Xuan X,Li D.Analysis of Electrokinetic Flow in Microfluidic Networks[J]. J Micromech Microeng,2003,14(2):290-298. | [63] | Heyden F H J V D,Bonthuis D J,Stein D,et al. Electrokinetic Energy Conversion Efficiency in Nanofluidic Channels[J]. Nano Lett,2006,6(10):2232-2237. | [64] | Heyden F H J V D,Bonthuis D J,Stein D,et al. Power Generation by Pressure-Driven Transport of Ions in Nanofluidic Channels[J]. Nano Lett,2007,7(4):1022-1025. | [65] | Osterle J F.Electrokinetic Energy Conversion[J]. J Appl Mech,1964,31(2):161-164. | [66] | Burgreen D,Nakache F R.Efficiency of Pumping and Power Generation in Ultrafine Electrokinetic Systems[J]. J Appl Mech,1965,32(3):675-679. | [67] | Morrison Jr F A,Osterle J F. Electrokinetic Energy Conversion in Ultrafine Capillaries[J]. J Chem Phys,1965,43(6):2111-2115. | [68] | Daiguji H,Oka Y,Adachi T,et al. Theoretical Study on the Efficiency of Nanofluidic Batteries[J]. Electrochem Commun,2006,8(11):1796-1800. | [69] | Lu M C,Satyanarayana S,Karnik R,et al. A Mechanical-electrokinetic Battery Using a Nano-porous Membrane[J]. J Micromech Microeng,2006,16(4):667-675. | [70] | Chang C C,Yang R J.Electrokinetic Energy Conversion in Micrometer-length Nanofluidic Channels[J]. Microfluidics Nanofluidics,2009,9(2/3):225-241. | [71] | Wang M,Kang Q.Electrochemomechanical Energy Conversion Efficiency in Silica Nanochannels[J]. Microfluidics Nanofluidics,2010,9(2/3):181-190. | [72] | Chein R,Tsai K,Yeh L.Analysis of Effect of Electrolyte Types on Electrokinetic Energy Conversion in Nanoscale Capillaries[J]. Electrophoresis,2010,31(3):535-545. | [73] | Xie Y B,Sherwood J D,Shui L,et al. Strong Enhancement of Streaming Current Power by Application of Two Phase Flow[J]. Lab Chip,2011,11(23):4006-4011. | [74] | Gillespie D.High Energy Conversion Efficiency in Nanofluidic Channels[J]. Nano Lett,2012,12(3):1410-1416. | [75] | Chanda S,Sinha S,Das S.Streaming Potential and Electroviscous Effects in Soft Nanochannels:Towards Designing More Efficient Nanofluidic Electrochemomechanical Energy Converters[J]. Soft Matter,2014,10(38):7558-7568. | [76] | Haldrup S,Catalano J,Hansen M R,et al. High Electrokinetic Energy Conversion Efficiency in Charged Nanoporous Nitrocellulose/Sulfonated Polystyrene Membranes[J]. Nano Lett,2015,15(2):1158-1165. | [77] | Bakli C,Chakraborty S.Electrokinetic Energy Conversion in Nanofluidic Channels:Addressing the Loose Ends in Nanodevice Efficiency[J]. Electrophoresis,2015,36(5):675-681. | [78] | Haldrup S,Catalano J,Hinge M,et al. Tailoring Membrane Nano-Structure and Charge Density for High Electrokinetic Energy Conversion Efficiency[J]. ACS Nano,2016,10(2):2415-2423. | [79] | Arki P,Hecker C,Güth F,et al. Nano- and Microfluidic Channels as Electrokinetic Sensors and Energy Harvesting Devices-Importance of Surface Charge on Solid-Liquid Interfaces[J]. Procedia Eng,2016,168:1374-1377. | [80] | Yan Z,He Y,Tsutsui M,et al. Short Channel Effects on Electrokinetic Energy Conversion in Solid-State Nanopores[J]. Sci Rep,2017,7:46661. | [81] | Mei L,Yeh L H,Qian S.Buffer Anions can Enormously Enhance the Electrokinetic Energy Conversion in Nanofluidics with Highly Overlapped Double Layers[J]. Nano Energy,2016,32:374-381. | [82] | Ren Y,Stein D.Slip-enhanced Electrokinetic Energy Conversion in Nanofluidic Channels[J]. Nanotechnology,2008,19(19):195707. | [83] | Pennathur S,Eijkel J C,Van d B A. Energy Conversion in Microsystems:Is There a Role for Micro/nanofluidics[J]. Lab on A Chip,2007,7(10):1234-1237. | [84] | Davidson C,Xuan X.Electrokinetic Energy Conversion in Slip Nanochannels[J]. J Power Sources,2008,179(1):297-300. | [85] | Chang C C,Yang R J.Electrokinetic Energy Conversion Efficiency in Ion-selective Nanopores[J]. Appl Phys Lett,2011,99(8):083102. | [86] | Yan Y,Sheng Q,Wang C,et al. Energy Conversion Efficiency of Nanofluidic Batteries:Hydrodynamic Slip and Access Resistance[J]. J Phys Chem C,2013,117(16):8050-8061. |
|