1 |
THEURETZBACHER U, GOTTWALT S, BEYER P, et al. Analysis of the clinical antibacterial and antituberculosis pipeline[J]. Lancet Infect Dis, 2019, 19(2): e40-e50.
|
2 |
HANNA N, TAMHANKAR A J, STÅLSBY LUNDBORG C. Antibiotic concentrations and antibiotic resistance in aquatic environments of the WHO Western Pacific and South-East Asia regions: a systematic review and probabilistic environmental hazard assessment[J]. Lancet Planet Health, 2023, 7(1): e45-e54.
|
3 |
PIEWNGAM P, KHONGTHONG S, ROEKNGAM N, et al. Probiotic for pathogen-specific Staphylococcus aureus decolonisation in Thailand: a phase 2, double-blind, randomised, placebo-controlled trial[J]. Lancet Microbe, 2023, 4(2): e75-e83.
|
4 |
BASSETTI M, MAGNÈ F, GIACOBBE D R, et al. New antibiotics for Gram-negative pneumonia[J]. Eur Respir Rev, 2022, 31(166): 220119.
|
5 |
DEO S, TURTON K L, KAINTH T, et al. Strategies for improving antimicrobial peptide production[J]. Biotechnol Adv, 2022, 59: 107968.
|
6 |
UPADHAYAY A, LING J, PAL D, et al. Resistance-proof antimicrobial drug discovery to combat global antimicrobial resistance threat[J]. Drug Resist Updat, 2023, 66:100890.
|
7 |
AYOBAMI O, BRINKWIRTH S, ECKMANNS T, et al. Antibiotic resistance in hospital-acquired ESKAPE-E infections in low- and lower-middle-income countries: a systematic review and meta-analysis[J]. Emerg Microbes Infect, 2022, 11(1): 443-451.
|
8 |
BURKE A, DI FILIPPO M, SPICCIO S, et al. Antimicrobial evaluation of new pyrazoles, indazoles and pyrazolines prepared in continuous flow mode[J]. Int J Mol Sci, 2023, 24(6): 5319.
|
9 |
LEE A S, DE LENCASTRE H, GARAU J, et al. Methicillin-resistant Staphylococcus aureus[J]. Nat Rev Dis Primers, 2018, 4: 18033.
|
10 |
SUN Y, QIN H, YAN Z, et al. Combating biofilm associated infection in vivo: integration of quorum sensing inhibition and photodynamic treatment based on multidrug delivered hollow carbon nitride sphere[J]. Adv Funct Mater, 2019, 29(14): 1808222.
|
11 |
BUZZÁ H H, ALVES F, TOMÉ A J B, et al. Porphyrin nanoemulsion for antimicrobial photodynamic therapy: effective delivery to inactivate biofilm-related infections[J]. Proc Natl Acad Sci USA, 2022, 119(46): e2216239119.
|
12 |
CUI T, WU S, SUN Y, et al. Self-propelled active photothermal nanoswimmer for deep-layered elimination of biofilm in vivo[J]. Nano Lett, 2020, 20(10): 7350-7358.
|
13 |
赵凯超, 赵旭, 严秀平. pH可逆激活型不对称菁光敏剂的光动力杀菌活性[J]. 应用化学, 2020, 37(6): 620-626.
|
|
ZHAO K C, ZHAO X, YAN X P. pH reversibly activated asymmetric cyanine photosensitizer for photodynamic antibacterial[J]. Chin J Appl Chem, 2020, 37(6): 620-626.
|
14 |
WANG Z, WU A, CHENG W, et al. Adoptive macrophage directed photodynamic therapy of multidrug-resistant bacterial infection[J]. Nat Commun, 2023, 14(1): 7251.
|
15 |
TANINAKA A, KUROKAWA H, KAMIYANAGI M, et al. Polphylipoprotein-induced autophagy mechanism with high performance in photodynamic therapy[J]. Commun Biol, 2023, 6(1): 1212.
|
16 |
ZHU W, LI Y, GUO S, et al. Stereoisomeric engineering of aggregation-induced emission photosensitizers towards fungal killing[J]. Nat Commun, 2022, 13(1): 7046.
|
17 |
VATANSEVER F, DE MELO W C, AVCI P, et al. Antimicrobial strategies centered around reactive oxygen species-bactericidal antibiotics, photodynamic therapy, and beyond[J]. FEMS Microbiol Rev, 2013, 37(6): 955-989.
|
18 |
ZIEGELHOFFER E C, DONOHUE T J. Bacterial responses to photo-oxidative stress[J]. Nat Rev Microbiol, 2009, 7(12): 856-863.
|
19 |
HALSTEAD F D, THWAITE J E, BURT R, et al. Antibacterial activity of blue light against nosocomial wound pathogens growing planktonically and as mature biofilms[J]. Appl Environ Microbiol, 2016, 82(13): 4006-4016.
|
20 |
ZHANG Y, ZHU Y, GUPTA A, et al. Antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model: implications for prophylaxis and treatment of combat-related wound infections[J]. J Infect Dis, 2014, 209(12): 1963-1971.
|
21 |
LU M, WANG S, WANG T, et al. Bacteria-specific phototoxic reactions triggered by blue light and phytochemical carvacrol[J]. Sci Transl Med, 2021, 13(575): eaba3571.
|
22 |
AHMED I, FANG Y, LU M, et al. Recent patents on light-based anti-infective approaches[J]. Recent Pat Antiinfect Drug Discov, 2018, 13(1): 70-88.
|
23 |
SARKER M A R, AHN Y H. Photodynamic inactivation of multidrug-resistant bacteria in wastewater effluent using green phytochemicals as a natural photosensitizer[J]. Environ Pollut, 2022, 311: 120015.
|
24 |
SCHREINER M, BÄUMLER W, ECKL D B, et al. Photodynamic inactivation of bacteria to decolonize meticillin-resistant Staphylococcus aureus from human skin[J]. Br J Dermatol, 2018, 179(6): 1358-1367.
|
25 |
MCDONALD R, MACGREGOR S J, ANDERSON J G, et al. Effect of 405-nm high-intensity narrow-spectrum light on fibroblast-populated collagen lattices: an in vitro model of wound healing[J]. J Biomed Opt, 2011, 16(4): 048003.
|
26 |
KLEINPENNING M M, SMITS T, FRUNT M H, et al. Clinical and histological effects of blue light on normal skin[J]. Photodermatol Photoimmunol Photomed, 2010, 26(1): 16-21.
|
27 |
WANG Y C, WANG Y, WANG Y G, et al. Antimicrobial blue light inactivation of pathogenic microbes: state of the art[J]. Drug Resist Updat, 2017, 33/34/35: 1-22.
|
28 |
丰翠, 闵曼, 谢蓉蓉, 等. 香豆素基Schiff碱类化合物的合成及抗氧化性能[J]. 应用化学, 2018, 35(5): 538-543.
|
|
FENG C, MIN M, XIE R R, et al. Synthesis and antioxidant activity of coumarin schiff base derivatives[J]. Chin J Appl Chem, 2018, 35(5): 538-543.
|
29 |
WITAICENIS A, DE OLIVEIRA E C S, TANIMOTO A, et al. 4-Methylesculetin, a coumarin derivative, ameliorates dextran sulfate sodium-induced intestinal inflammation[J]. Chem Biol Interact, 2018, 280: 59-63.
|
30 |
XU J, LI H, WANG X, et al. Discovery of coumarin derivatives as potent and selective cyclin-dependent kinase 9 (CDK9) inhibitors with high antitumour activity[J]. Eur J Med Chem, 2020, 200: 112424.
|
31 |
POTAPENKO A. Mechanisms of photodynamic effects of furocoumarins[J]. J Photochem Photobiol B, 1991, 9(1): 1-33.
|
32 |
LAKE B G. Coumarin metabolism, toxicity and carcinogenicity: relevance for human risk assessment[J]. Food Chem Toxicol, 1999, 37(4): 423-453.
|
33 |
FELTER S P, VASSALLO J D, CARLTON B D, et al. A safety assessment of coumarin taking into account species-specificity of toxicokinetics[J]. Food Chem Toxicol, 2006, 44(4): 462-475.
|
34 |
ORTEGA-FORTE E, ROVIRA A, GANDIOSO A, et al. COUPY coumarins as novel mitochondria-targeted photodynamic therapy anticancer agents[J]. J Med Chem, 2021, 64(23): 17209-17220.
|
35 |
ORTEGA-FORTE E, ROVIRA A, LÓPEZ-CORRALES M, et al. A near-infrared light-activatable Ru(Ⅱ)-coumarin photosensitizer active under hypoxic conditions[J]. Chem Sci, 2023, 14(26): 7170-7184.
|
36 |
DEBNATH T, MAITY P, LOBO H, et al. Extensive reduction in back electron transfer in twisted intramolecular charge-transfer (TICT) coumarin-dye-sensitized TiO2 nanoparticles/film: a femtosecond transient absorption study[J]. Chemistry, 2014, 20(12): 3510-3519.
|
37 |
DEBNATH T, DANA J, MAITY P, et al. Restriction of molecular twisting on a gold nanoparticle surface[J]. Chemistry, 2015, 21(15): 5704-5708.
|
38 |
QIN H, CUI T, LIU Z, et al. Engineering amyloid aggregation as a new way to eliminate cancer stem cells by the disruption of iron homeostasis[J]. Nano Lett, 2021, 21(17): 7379-7387.
|
39 |
TURSI S A, PULIGEDDA R D, SZABO P, et al. Salmonella typhimurium biofilm disruption by a human antibody that binds a pan-amyloid epitope on curli[J]. Nat Commun, 2020, 11(1): 1007.
|
40 |
BORDON Y. Bacteria form unique biofilms to kill immune cells[J]. Nat Rev Immunol, 2023, 23(8): 474.
|
41 |
MAREE M, THI NGUYEN L T, OHNIWA R L, et al. Natural transformation allows transfer of SCCmec-mediated methicillin resistance in Staphylococcus aureus biofilms[J]. Nat Commun, 2022, 13(1): 2477.
|
42 |
CAO F, ZHANG L, WANG H, et al. Defect-rich adhesive nanozymes as efficient antibiotics for enhanced bacterial inhibition[J]. Angew Chem Int Ed Engl, 2019, 58(45): 16236-16242.
|