应用化学 ›› 2024, Vol. 41 ›› Issue (10): 1409-1424.DOI: 10.19894/j.issn.1000-0518.240142
• 综合评述 • 上一篇
收稿日期:
2024-05-06
接受日期:
2024-08-30
出版日期:
2024-10-01
发布日期:
2024-10-29
通讯作者:
董彪,王林
基金资助:
Wei-Chen ZHAO1, Man-Lin QI1, Jing ZHOU1, Biao DONG2(), Lin WANG1()
Received:
2024-05-06
Accepted:
2024-08-30
Published:
2024-10-01
Online:
2024-10-29
Contact:
Biao DONG,Lin WANG
About author:
dongb@jlu.edu.cnSupported by:
摘要:
微纳米马达相较于传统纳米药物具有显著优势,其自主运动能力赋予其更多应用的可能性。 然而,生物体内复杂的屏障系统,包括细胞屏障、组织屏障再到细菌生物膜屏障。 这些生物屏障,从宏观到微观,通过高度选择性和物理阻隔机制阻碍药物到达靶点并发挥作用。 因此,设计和优化微纳米马达,使其能够有效穿越生物屏障,是当前研究的重要挑战。 本文重点介绍了微纳米马达在克服生物屏障近5年的研究进展,同时讨论了存在的挑战和未来的研究重点。 随着研究者对微纳米马达的不断优化,未来微纳米马达能够开辟一种全新的治疗通道。 通过突破传统药物难以逾越的生物屏障,为临床治疗提供更加精确和有效的解决方案。
中图分类号:
赵尉晨, 齐曼霖, 周菁, 董彪, 王林. 穿越生物屏障的微纳米马达研究进展[J]. 应用化学, 2024, 41(10): 1409-1424.
Wei-Chen ZHAO, Man-Lin QI, Jing ZHOU, Biao DONG, Lin WANG. Research Progress of Micro/Nanomotors in Crossing Biological Barriers[J]. Chinese Journal of Applied Chemistry, 2024, 41(10): 1409-1424.
图1 (A)Pt@HSNs(DQ)纳米马达的合成示意图; (B)通过流式细胞术检测Dox+Que、Pt@HSN和Pt@HSN(DQ)诱导肿细胞24 h凋亡率和(C)不同浓度下的细胞毒性[31]
Fig.1 (A) Schematic of the synthesis of Pt@HSNs(DQ) nanomotor; (B) The apoptosis rate of tumor cells induced by Dox+Que, Pt@HSN and Pt@HSN(DQ) for 24 h was detected by flow cytometry and (C) cytotoxicity of cancer cells at different concentrations[31]
图2 (A) Au/Pt-Ens前体的能量色散X线能谱显示不对称结构及(B)透射电子显微镜(TEM)下Pt枝晶的生长过程; (C)罗丹明110修饰的Au/Pt-Ens在存在和不存在葡萄糖情况下与癌细胞的相互作用及(D)10 min后的激光共聚焦图像; (E)Au/Pt-Ens处理后癌细胞的TEM图像[34]
Fig.2 (A) Energy-dispersive X-ray spectroscopy of Au/Pt-Ens precursors showing an asymmetric structure and (B) the growth process of Pt dendrites under transmission electron microscopy (TEM); (C) The interaction of Rhodamine 110-modified Au/Pt-Ens with cancer cells in the presence and absence of glucose and (D) confocal laser scanning microscopy images after 10 min; (E) TEM images of cancer cells after treatment with Au/Pt-ENs in a glucose environment[34]
图3 (A) PNMs的设计策略; (B) PNMs介导的荧光素二-β-D-吡喃半乳糖苷(FDG)和β-半乳糖苷酶(β-gal)在活细胞内转运的设计策略; (C) NIR照射前后活细胞内荧光变化的共聚焦图像[40]
Fig.3 (A) Design strategy of PNMs; (B) Design strategy for the transport of fluorescein di(β-D-galactopyranoside) (FDG) and β-galactosidase (β-gal) mediated by PNMs in living cells; (C) Confocal images showing fluorescence changes in living cells before and after NIR irradiation[40]
图4 (A) tBT@PDA-CPT的制备; (B) NIR照射产生热泳力以推动纳米马达在肿瘤组织中的扩散,并且内置的热释电场影响膜电位以增强肿瘤细胞内化; (C) Comsol模拟的tBT@PDA-CPT沿极性轴的热释电电势分布以及(D)在加热和冷却过程中不同温差(ΔT)下的热释电电势[42]
Fig.4 (A) Preparation of tBT@PDA-CPT; (B) NIR irradiation generates thermophoretic force to propel the nanomotors for diffusion within tumor tissues, and the intrinsic pyroelectric field affects the membrane potential to enhance tumor cell internalization; (C) Comsol simulation of pyroelectric potential distribution along the polarity axis of tBT@PDA-CPT and (D) pyroelectric potentials at different temperature differences (ΔT) during the heating and cooling process[42]
图5 (A)细胞对纳米马达的摄取; 非纳米马达(B)和纳米马达(C)在 4T1细胞中的共定位[43]
Fig.5 (A) Cellular uptake of nanomotors; Colocalization of non-nanomotors (B) and nanomotors (C) in 4T1 cells[43]
图6 (A)暴露于NIR光后金纳米壳功能化的聚合物管状纳米马达穿过细胞膜的示意图; (B-D)延时图像,显示了在超声下纳米马达向HeLa细胞的移动以及用NIR照射的穿孔; (E)细胞穿孔后的激光共聚焦显微(CLSM)图像及(F)对应的三维重建图像; (G)细胞穿孔后的SEM图像[44]
Fig.6 (A) Schematic of the gold nanoshell-functionalized polymer tubular nanomotor crossing the cell membrane after exposure to NIR; (B-D) Time-lapse images showing the movement of the nanomotor towards HeLa cells under ultrasound and perforation upon NIR irradiation; (E) Confocal laser scanning microscope (CLSM) images of cells after perforation and (F) corresponding 3D reconstruction images; (G) SEM images of cells after perforation[44]
图7 (A)碳纳米螺旋磁控纳米马达(C-HNR)在磁场下主动接近靶癌细胞、穿透质膜或核膜并检测细胞内拉曼信号的示意图; (B) C-HNR穿透核膜的横截面图像; (C) C-HNR的磁通量密度(上图)和压力分布(下图); (D)从HeLa细胞核内C-HNR获得的拉曼光谱; (E)明场图像和荧光图像的比较显示了在20 min NIR照射之前和之后对单个HeLa细胞的靶向光热治疗[45]
Fig.7 (A) Schematic diagram of a carbon helical nanorobots (C-HNR) actively approaching target cancer cells under a magnetic field, penetrating the cell membrane or nuclear membrane, and detecting intracellular Raman signals; (B) A cross-sectional image of the C-HNR penetrating the nuclear membrane; (C) The magnetic flux density (upper image) and pressure distribution (lower image) of the C-HNR; (D) Raman spectrum obtained from the C-HNR inside the nucleus of HeLa cells; (E) A comparison of bright-field and fluorescence images showing targeted photothermal therapy on a single HeLa cell before and after 20 min of NIR irradiation[45]
图8 (A) Au-Zn纳米马达诱导Ca2+通道响应并激活Jurkat T细胞的示意图; (B) Au-Zn纳米马达击中Jurkat T细胞的明场时间推移图像; (C)单纳米马达碰撞后,Fluo 4-AM(钙离子水平指示剂)染色的Jurkat T细胞的荧光变化[46]
Fig.8 (A) Schematic diagram of the Au-Zn nanomotor inducing Ca2+ channel response and activating Jurkat T cells; (B) Time-lapse bright-field images of the Au-Zn nanomotor impacting Jurkat T cells; (C) Fluorescence change of the Fluo 4-AM (Ca2+ level indicator) stained Jurkat T cell after a single nanomotor collision[46]
图9 (A)纳米马达的设计示意图; (B)纳米马达在脑组织中靶向脑胶质瘤的荧光及(C)CLSM图像[52]
Fig.9 (A) Schematic diagram of the nanomotor design; (B) Fluorescence of the nanomotor targeting glioblastoma
图10 (A)采用了搭载姜黄素的多孔二氧化硅头部和多个二氧化锰触须的不对称结构,包裹巨噬细胞膜的仿生纳米马达的制备示意图; (B)巨噬细胞膜包裹的纳米马达体外在有无过氧化氢下对细胞三维球体的渗透[53]
Fig.10 (A) Schematic diagram of the preparation of the biomimetic nanomotor with a macrophage membrane coating, featuring an asymmetric structure with a porous silica head loaded with curcumin and multiple manganese dioxide antennas; (B) Penetration of the macrophage membrane-coated nanomotor into a 3D cellular spheroid in vitro, with and without hydrogen peroxide[53]
图11 (A、B) TiO2@N-Au纳米马达在可见光照射下,发生光电化学水分解反应,建立局部不对称电场,提供自电泳力,驱动马达穿透玻璃体; (C)玻璃状网络结构的SEM图像; (D) TiO2@N-Au纳米马达穿过玻璃体的TEM图像[56]
Fig.11 (A,B) Under visible light irradiation, the TiO2@N-Au nanomotor undergoes a photoelectrochemical water splitting reaction, establishing a local asymmetric electric field that provides self-electrophoretic force to drive the motor through the vitreous; (C) SEM image of the vitreous network structure; (D) TEM image of the TiO2@N-Au nanomotor passing through the vitreous[56]
图12 (A) tBT@PDA-Cip的制备; (B) PDA层在近红外光照射下产生光热和热释电效应,并加速CIP的释放。 热释电输出干扰细菌的膜电位,增强CIP的进入[67]
Fig.12 (A) Preparation of tBT@PDA-Cip; (B) The PDA layer generates photothermal and pyroelectric effects under near-infrared illumination, accelerating CIP release. The pyroelectric output disrupts bacterial membrane potentials, enhancing CIP entry[67]
图13 (A) DMSNs-Pt-LOX@Nisin的制备及(B)“自上而下”或(C)“自下而上”靶向MRSA的迁移实验,并(D)排除重力影响[68]
Fig.13 (A) Preparation of DMSNs-Pt-LOX@Nisin and (B) “Top-to-down” or (C) “Bottom-to-top” targeting migration experiments against MRSA, (D) excluding the influence of gravity[68]
图14 (A) Ca@PDAFe-CNO纳米马达在·OH、NO和RNS共同作用清除生物膜和细菌及(B)体外生物膜渗透[69]
Fig.14 (A) Ca@PDAFe-CNO nanomotors can clear biofilms and bacteria under the joint effect of ·OH, NO and RNS, and (B) penetrate biofilms in vitro[69]
1 | KINBARA K, AIDA T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies[J]. Chem Rev, 2005, 105(4): 1377-400. |
2 | ASTUMIAN R D. How molecular motors work-insights from the molecular machinist's toolbox: the Nobel Prize in Chemistry 2016[J]. Chem Sci, 2017, 8(2): 840-845. |
3 | YUAN H, LIU X, WANG L, et al. Fundamentals and applications of enzyme powered micro/nano-motors[J]. Bioact Mater, 2021, 6(6): 1727-1749. |
4 | GAO S, HOU J, ZENG J, et al. Superassembled biocatalytic porous framework micromotors with reversible and sensitive pH-speed regulation at ultralow physiological H2O2 concentration[J]. Adv Funct Mater, 2019, 29(18): 1808900. |
5 | GAO W, PEI A, WANG J. Water-driven micromotors[J]. ACS Nano, 2012, 6(9): 8432-8438. |
6 | LAN Z, LI T, LI Q, et al. Multifunctional glucose-powered nanomotors with robust dual enzyme mimic activities[J]. Sep Purif Technol, 2024, 333: 125860. |
7 | LLOPIS-LORENTE A, GARCÍA-FERNÁNDEZ A, MURILLO-CREMAES N, et al. Enzyme-powered gated mesoporous silica nanomotors for on-command intracellular payload delivery[J]. ACS Nano, 2019, 13(10): 12171-12183. |
8 | ZHANG S, ZHU C, HUANG W, et al. Recent progress of micro/nanomotors to overcome physiological barriers in the gastrointestinal tract[J]. J Control Release, 2023, 360: 514-527. |
9 | HU Y, LI Z, SUN Y. Ultrasmall enzyme/light-powered nanomotor facilitates cholesterol detection[J]. J Colloid Interface Sci, 2022, 621: 341-351. |
10 | GUO J, GALLEGOS J J, TOM A R, et al. Electric-field-guided precision manipulation of catalytic nanomotors for cargo delivery and powering nanoelectromechanical devices[J]. ACS Nano, 2018, 12(2): 1179-1187. |
11 | GAO Q, YANG Z, ZHU R, et al. Ultrasonic steering wheels: turning micromotors by localized acoustic microstreaming[J]. ACS Nano, 2023, 17(5): 4729-4739. |
12 | KICHATOV B, KORSHUNOV A, SUDAKOV V, et al. Magnetic nanomotors in emulsions for locomotion of microdroplets[J]. ACS Appl Mater Interfaces, 2022, 14(8): 10976-10986. |
13 | DHAR P, NARENDREN S, GAUR S S, et al. Self-propelled cellulose nanocrystal based catalytic nanomotors for targeted hyperthermia and pollutant remediation applications[J]. Int J Biol Macromol, 2020, 158: 1020-1036. |
14 | WANG Y, LIU Y, LI Y, et al. Magnetic nanomotor-based maneuverable SERS probe[J]. Research, 2020, 2020: 7962024. |
15 | WANG Y, DUAN W, ZHOU C, et al. Phoretic liquid metal micro/nanomotors as intelligent filler for targeted microwelding[J]. Adv Mater, 2019, 31(51): 1905067. |
16 | SUN J, MATHESH M, LI W, et al. Enzyme-powered nanomotors with controlled size for biomedical applications[J]. ACS Nano, 2019, 13(9): 10191-10200. |
17 | ZHENG Z, ZHENG X, KONG D, et al. Pressure-gradient counterwork of dual-fuel driven nanocarriers in abnormal interstitial fluids for enhancing drug delivery efficiency[J]. Small, 2023, 19(24): 2207252. |
18 | QUALLIOTINE J R, BOLAT G, BELTRÁN-GASTÉLUM M, et al. Acoustic nanomotors for detection of human papillomavirus-associated head and neck cancer[J]. Otolaryngol Head Neck Surg, 2019, 161(5): 814-822. |
19 | JIANG L, LIU X, ZHAO D, et al. Intelligent sensing based on active micro/nanomotors[J]. J Mat Chem B, 2023, 11(37): 8897-8915. |
20 | CHEN W, WANG Y, HU H, et al. NIR-Ⅱ light powered hydrogel nanomotor for intravesical instillation with enhanced bladder cancer therapy[J]. Nanoscale, 2024, 16(21): 10273-10282. |
21 | WANG M, BAO T, YAN W, et al. Nanomotor-based adsorbent for blood lead(Ⅱ) removal in vitro and in pig models[J]. Bioact Mater, 2021, 6(4): 1140-1149. |
22 | WU Y, SONG Z, DENG G, et al. Gastric acid powered nanomotors release antibiotics for in vivo treatment of helicobacter pylori infection[J]. Small, 2021, 17(11): 2006877. |
23 | JOSEPH A, CONTINI C, CECCHIN D, et al. Chemotactic synthetic vesicles: design and applications in blood-brain barrier crossing[J]. Sci Adv, 2017, 3(8): e1700362. |
24 | EDIDIN M. Lipids on the frontier: a century of cell-membrane bilayers[J]. Nat Rev Mol Cell Biol, 2003, 4(5): 414-418. |
25 | DIAS C, NYLANDSTED J. Plasma membrane integrity in health and disease: significance and therapeutic potential[J]. Cell Discov, 2021, 7(1): 4. |
26 | TAY A, MELOSH N. Nanostructured materials for intracellular cargo delivery[J]. Acc Chem Res, 2019, 52(9): 2462-2471. |
27 | SETTEN R L, ROSSI J J, HAN S P. The current state and future directions of RNAi-based therapeutics[J]. Nat Rev Drug Discov, 2019, 18(6): 421-446. |
28 | LI J, ZHEN X, LYU Y, et al. Cell membrane coated semiconducting polymer nanoparticles for enhanced multimodal cancer phototheranostics[J]. ACS Nano, 2018, 12(8): 8520-8530. |
29 | GAO C, WANG Y, YE Z, et al. Biomedical micro-/nanomotors: from overcoming biological barriers to in vivo imaging[J]. Adv Mater, 2021, 33(6): 2000512. |
30 | DAI Q, WILHELM S, DING D, et al. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors[J]. ACS Nano, 2018, 12(8): 8423-8435. |
31 | ZHOU H, YUAN Y, WANG Z, et al. Co-delivery of doxorubicin and quercetin by Janus hollow silica nanomotors for overcoming multidrug resistance in breast MCF-7/Adr cells[J]. Colloid Surface A, 2023, 658: 130654. |
32 | LIU M, FU M, YANG X, et al. Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer[J]. Colloid Surf B-Biointerfaces, 2020, 196: 111284. |
33 | SHAO M, CHANG C, LIU Z, et al. Polydopamine coated hollow mesoporous silica nanoparticles as pH-sensitive nanocarriers for overcoming multidrug resistance[J]. Colloid Surf B-Biointerfaces, 2019, 183: 110427. |
34 | KWON T, KUMARI N, KUMAR A, et al. Au/Pt-egg-in-nest nanomotor for glucose-powered catalytic motion and enhanced molecular transport to living cells[J]. Angew Chem Int Ed, 2021, 60(32): 17579-17586. |
35 | WANG W, WU Z, HE Q. Swimming nanorobots for opening a cell membrane mechanically[J]. View-China, 2020, 1(3): 20200005. |
36 | LIU H, WEN J, XIAO Y, et al. In situ mechanical characterization of the cell nucleus by atomic force microscopy[J]. ACS Nano, 2014, 8(4): 3821-3828. |
37 | YOU Y, XU D, PAN X, et al. Self-propelled enzymatic nanomotors for enhancing synergetic photodynamic and starvation therapy by self-accelerated cascade reactions[J]. Appl Mater Today, 2019, 16: 508-517. |
38 | BEHZADI S, SERPOOSHAN V, TAO W, et al. Cellular uptake of nanoparticles: journey inside the cell[J]. Chem Soc Rev, 2017, 46(14): 4218-4244. |
39 | XUAN M, SHAO J, GAO C, et al. Self-propelled nanomotors for thermomechanically percolating cell membranes[J]. Angew Chem Int Ed, 2018, 57(38): 12463-12467. |
40 | SHAO J, CAO S, WILLIAMS D S, et al. Photoactivated polymersome nanomotors: traversing biological barriers[J]. Angew Chem Int Ed, 2020, 59(39): 16918-16925. |
41 | RODZINSKI A, GUDURU R, LIANG P, et al. Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles[J]. Sci Rep, 2016, 6(1): 20867. |
42 | MENG J, WEI K, XIE S, et al. Pyroelectric Janus nanomotors to promote cell internalization and synergistic tumor therapy[J]. J Control Release, 2023, 357: 342-355. |
43 | REN J, HU P, MA E, et al. Enzyme-powered nanomotors with enhanced cell uptake and lysosomal escape for combined therapy of cancer[J]. Appl Mater Today, 2022, 27: 101445. |
44 | WANG W, WU Z, LIN X, et al. Gold-nanoshell-functionalized polymer nanoswimmer for photomechanical poration of single-cell membrane[J]. J Am Chem Soc, 2019, 141(16): 6601-6608. |
45 | CHEN Y, PAN R, WANG Y, et al. Carbon helical nanorobots capable of cell membrane penetration for single cell targeted SERS bio-sensing and photothermal cancer therapy[J]. Adv Funct Mater, 2022, 32(30): 2200600. |
46 | XIE D, FU D, FU S, et al. Mechanical activation of immune T cells via a water driven nanomotor[J]. Adv Healthc Mater, 2022, 11(12): 2200042. |
47 | FURTADO D, BJÖRNMALM M, AYTON S, et al. Overcoming the blood-brain barrier: the role of nanomaterials in treating neurological diseases[J]. Adv Mater, 2018, 30(46): 1801362. |
48 | VANLANDEWIJCK M, HE L, MÄE M A, et al. A molecular atlas of cell types and zonation in the brain vasculature[J]. Nature, 2018, 554(7693): 475-480. |
49 | SWEENEY M D, AYYADURAI S, ZLOKOVIC B V. Pericytes of the neurovascular unit: key functions and signaling pathways[J]. Nat Neurosci, 2016, 19(6): 771-783. |
50 | OBERMEIER B, DANEMAN R, RANSOHOFF R M. Development, maintenance and disruption of the blood-brain barrier[J]. Nat Med, 2013, 19(12): 1584-1596. |
51 | TIAN M, MA Z, YANG G Z. Micro/nanosystems for controllable drug delivery to the brain[J]. Innovation-Amsterdam, 2024, 5(1): 100548. |
52 | CHEN H, LI T, LIU Z, et al. A nitric-oxide driven chemotactic nanomotor for enhanced immunotherapy of glioblastoma[J]. Nat Commun, 2023, 14(1): 941. |
53 | YE J, FAN Y, SHE Y, et al. Biomimetic self-propelled asymmetric nanomotors for cascade-targeted treatment of neurological inflammation[J]. Adv Sci, 2024, 11(22): 2310211. |
54 | WU Z, CHEN Y, MUKASA D, et al. Medical micro/nanorobots in complex media[J]. Chem Soc Rev, 2020, 49(22): 8088-8112. |
55 | HOU K, ZHANG Y, BAO M, et al. Biosafety of micro/nanomotors towards medical application[J]. Mater Adv, 2021, 2(11): 3441-3458. |
56 | CHEN B, DING M, TAN H, et al. Visible-light-driven TiO2@N-Au nanorobot penetrating the vitreous[J]. Appl Mater Today, 2022, 27: 101455. |
57 | ZIERDEN H C, JOSYULA A, SHAPIRO R L, et al. Avoiding a sticky situation: bypassing the mucus barrier for improved local drug delivery[J]. Trends Mol Med, 2021, 27(5): 436-450. |
58 | MURGIA X, LORETZ B, HARTWIG O, et al. The role of mucus on drug transport and its potential to affect therapeutic outcomes[J]. Adv Drug Deliv Rev, 2018, 124: 82-97. |
59 | CARLSON T L, LOCK J Y, CARRIER R L. Engineering the mucus barrier[J]. Annu Rev Biomed Eng, 2018, 20: 197-220. |
60 | SERRA-CASABLANCAS M, DI CARLO V, ESPORRíN-UBIETO D, et al. Catalase-powered nanobots for overcoming the mucus barrier[J]. ACS Nano, 2024, 18: 16701-16714. |
61 | JIANG Z, FU L, WEI C, et al. Antibacterial micro/nanomotors: advancing biofilm research to support medical applications[J]. J Nanobiotechnol, 2023, 21(1): 388. |
62 | SU Z, KONG L, DAI Y, et al. Bioresponsive nano-antibacterials for H2S-sensitized hyperthermia and immunomodulation against refractory implant-related infections[J]. Sci Adv, 8(14): eabn1701. |
63 | CHEN M, WEI J, XIE S, et al. Bacterial biofilm destruction by size/surface charge-adaptive micelles[J]. Nanoscale, 2019, 11(3): 1410-1422. |
64 | MAKABENTA J M V, NABAWY A, LI C H, et al. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections[J]. Nat Rev Microbiol, 2021, 19(1): 23-36. |
65 | IKUMA K, DECHO A W, LAU B L T. When nanoparticles meet biofilms-interactions guiding the environmental fate and accumulation of nanoparticles[J]. Front Microbiol, 2015, 6: 591. |
66 | WU J, LI F, HU X, et al. Responsive assembly of silver nanoclusters with a biofilm locally amplified bactericidal effect to enhance treatments against multi-drug-resistant bacterial infections[J]. ACS Central Sci, 2019, 5(8): 1366-1376. |
67 | MENG J, ZHANG P, LIU Q, et al. Pyroelectric Janus nanomotors for synergistic electrodynamic-photothermal-antibiotic therapies of bacterial infections[J]. Acta Biomater, 2023, 162: 20-31. |
68 | ZHENG J, DENG Y, ZHAO S, et al. Cascade-driven nanomotors promote diabetic wound healing by eradicating MRSA biofilm infection[J]. Chem Eng J, 2024, 481: 148790. |
69 | XIE S, HUANG K, PENG J, et al. Self-propelling nanomotors integrated with biofilm microenvironment-activated NO release to accelerate healing of bacteria-infected diabetic wounds[J]. Adv Healthc Mater, 2022, 11(19): 2201323. |
70 | ZHENG J, WANG W, GAO X, et al. Cascade catalytically released nitric oxide-driven nanomotor with enhanced penetration for antibiofilm[J]. Small, 2022, 18(52): 2205252. |
[1] | 卢星辰, 刘健, 杜娟, 高小荣, 许勇, 任小庆. 一种可降解半互穿网络暂堵剂的制备及性能[J]. 应用化学, 2024, 41(9): 1271-1283. |
[2] | 解晓明, 张嘉琦. 氢键作用驱动原花青素构筑水基抗菌黏合剂[J]. 应用化学, 2022, 39(10): 1533-1542. |
[3] | 牛贺强, 武发思, 王丽琴, 樊再轩. 凝胶材料在文物表面污渍去除中的研究进展[J]. 应用化学, 2021, 38(11): 1441-1453. |
[4] | 宋汝彤, 郭立娟, 郭拥军, 冯茹森, 张新民, 胡俊, 李华兵. 不同类型表面活性剂对纳米SiO2流体粘度的影响[J]. 应用化学, 2014, 31(09): 1083-1088. |
[5] | 侯晓育, 刘凯强, 房喻. 具有选择性胶凝能力的小分子胶凝剂研究进展[J]. 应用化学, 2011, 28(11): 1221-1228. |
[6] | 王寅宁, 赵佰金, 李良彬. 利用原位X射线散射研究神经酰胺E与海藻糖的相互作用[J]. 应用化学, 2010, 27(10): 1149-1155. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||