[1] WOLBERS R. Cleaning painted surfaces: aqueous methods[J]. Stud Conserv, 2001, 46(3): 221-224. [2] STULIK D, MILLER D, KHANJIAN, et al. Solvent gels for the cleaning of works of art: the residue question[M]. California: Getty Publications, 2004: 18. [3] STULIK D, KHANJIAN H, DORGE V, et al. Scientific investigation of surface cleaning processes: quantitative study of gel residue on porous and topographically complex surfaces[C]. ICOM-CC: 13th Triennial Meeting, 2002: 245-251. [4] 谢帅, 雒春辉. 聚合物微球交联水凝胶研究进展[J]. 高分子通报, 2020(9): 31-36. XIE S, LUO C H. Research progress in hydrogels cross-linked by polymeric nanoparticles[J]. Chin Polym Bull, 2020(9): 31-36. [5] 冀成, 甄二飞, 王海旺, 等. 水凝胶增韧机理研究进展[J]. 化工新型材料, 2020, 48(11): 44-48, 53. JI C, ZHEN E F, WANG H W, et al. Research progress on toughening mechanism of hydrogel[J]. New Chem Mater, 2020, 48(11): 44-48, 53. [6] 林木松, 宋梦梦, 梁相永, 等. 增韧水凝胶的研究进展[J]. 高分子材料科学与工程, 2019, 35(11): 174-180, 190. LIN M S, SONG M M, LIANG X Y, et al. Progress on toughening mechanism of hydrogels[J]. Polym Mater: Sci Eng, 2019, 35(11): 174-180, 190. [7] CARRETTI E, BONINI M, DEI L, et al. New frontiers in materials science for art conservation: responsive gels and beyond[J]. Acc Chem Res, 2010, 43(6): 751. [8] BONINI M, LENZ S, GIORGI R, et al. Nanomagnetic sponges for the cleaning of works of art[J]. Langmuir, 2007, 23(17): 8681. [9] BONINI M, LENZ S, FALLETTA E, et al. Acrylamide-based magnetic nanosponges: a new smart nanocomposite material[J]. Langmuir, 2008, 24(21): 12644-12650. [10] PIZZORUSSO G, FRATINI E, EIBLMEIER J, et al. Physicochemical characterization of acrylamide/ bisacrylamide hydrogels and their application for the conservation of easel paintings[J]. Langmuir, 2012, 28(8): 3952-3961. [11] CARRETTI E, GRASSI S, COSSALTER M, et al. Poly(vinyl alcohol)-borate hydro/cosolvent gels: viscoelastic properties, solubilizing power, and application to art conservation[J]. Langmuir, 2009, 25(15): 8656-8662. [12] ALEM N J V, CHADWICK A V, HE J, et al. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials[J]. Pure Appl Chem, 2011, 60(10): 1801-1829. [13] ALMDAL K, DYRE J, HVIDT S, et al. Towards a phenomenological definition of the term ‘gel’[J]. Polym Gels Networks, 1993: 5-17. [14] FRATINI E, CARRETTI E. Chapter 10: cleaning iv: gels and polymeric dispersions[M]. Cambridge: RSC Publishing, 2013.. [15] KOPEEK J, YANG J. Hydrogels as smart biomaterials[J]. Polym Int, 2007, 56(9): 1078-1098. [16] BONELLI N, CHELAZZI D, BAGLIONI M, et al. Confined aqueous media for the cleaning of cultural heritage: innovative gels and amphiphile-based nanofluids[M]//Nanoscience and Cultural Heritage. Paris: Atlantis Press, 2016. [17] 赵林娟. 蒸汽清洗砂岩类文物效果检验[N]. 中国文物报, 2015-12-25(007). ZHAO L J. Effect test of steam cleaning sandstone cultural relics[N]. Chin Cult Rel News, 2015-12-25(007). [18] PHENIX A, SUTHERLAND K. The cleaning of paintings: effects of organic solvents on oil paint films[J]. Stud Conserv, 2013, 46(2): 47-60. [19] BAGLIONI P, CHELAZZI D. Nanoscience for the conservation of works of art[J]. R Soc Chem, 2013: 188-189. [20] WOLBERS R. Notes for workshop on new methods in the cleaning of paintings[M]. Los Angeles: Getty Conservation Institute, 1989. [21] BURNSTOCK A, WHITE R. A preliminary assessment of the agingidegradation of Ethomeen C-12 residues from solvent gel formulations and their potential for inducing changes in resinous paint media[J]. Stud Conserv, 2000: 29-53. [22] 阮方红. 基于水凝胶方法的鎏金青铜器除锈及彩绘文物除油烟技术研究[D]. 西安: 陕西师范大学, 2016. RUAN F H. Study on removing rust from gilded bronze ware based on hydrogel method and removing lampblack from coloured cultural relics[D]. Xi'an: Shaanxi Nomal University, 2016. [23] 杨小刚, 刘屏, 叶琳, 等. 基于水凝胶方法的重庆地区鎏金青铜器除锈新技术研究[J]. 文物保护与考古科学, 2019, 31(1): 35-40. YANG X G, LIU P, YE L, et al. Study on new rust removing technology of gilded bronze ware in Chongqing area based on hydrogel method[D]. Sci Conserv Archaeol, 2019, 31(1): 35-40. [24] 赵岗, 阮方红, 蒋思维, 等. 大足石刻广大山摩崖造像表面油烟清洗研究[J]. 四川文物, 2018(2): 90-96. ZHAO G, RUAN F H, JIANG S W, et al. Study on new rust removing technology of gilded bronze ware in Chongqing area based on hydrogel method[J]. Sichuan Cult Rel, 2018(2): 90-96. [25] FLORENCE G. Assessment of agar gel loaded with micro-emulsion for the cleaning of porous surfaces[J]. CeROArt, 2010, 53(2): 24-29. [26] DAVIES E, HUANG Y, HARPER J B, et al. Dynamics of water in agar gels studied using low and high resolution 1H NMR spectroscopy[J]. Int J Food Sci Technol, 2010, 45(12): 2502-2507. [27] GULOTTA D, SAVIELLO D, GHERARDI F. et al. Setup of a sustainable indoor cleaning methodology for the sculpted stone surfaces of the Duomo of Milan[J]. Heritage Sci, 2014(2): 6. [28] CREMONESI P. Surface cleaning? Yes, freshly grated Agar gel, please: studies in conservation[J]. Stud Conserv, 2016, 61(6): 362-367. [29] 马江丽. 将磨碎的琼脂凝胶用于文物表面清洗[J]. 文物保护与考古科学, 2017(2): 563. MA J L. Grinding agar gel for surface cleaning of cultural relics[J]. Sci Conserv Archaeol, 2017(2): 563. [30] GIORGI R, BAGLIONI M, BERTI D, et al. New methodologies for the conservation of cultural heritage: micellar solutions, microemulsions, and hydroxide nanoparticles[J]. Acc Cheml Res, 2010, 43(6): 695. [31] 沈依嘉, 周浩, 沈敬一. 琼脂凝胶在青铜文物激光清洗中的应用研究[J]. 文物保护与考古科学, 2018, 30(3): 3-15. CHEN Y J, ZHOU H, CHEN J Y. Applied research on the agar gel-mediated laser cleaning of bronze objects[J]. Sci Conserv Archaeol, 2018, 30(3): 3-15. [32] IANNUCCELLI S, SOTGIU S. A new methodology for wet conservation treatments of graphic art on paper with a rigid polysaccharide gel of gellan gum[C]//graphic documents working group interim meeting ICOMCC. choices in conservation practice versus research. Denmark: The Royal Library. 2010, 29: 25-39. [33] CAGGIONI M, SPICER P T, BLAIR D L, et al. Rheology and microrheology of a microstructured fluid: the gellan gum case[J]. J Rheol, 2007, 51(5): 851-865. [34] NAKAMURA K, SHINODA E, TOKITA M. The influence of compression velocity on strength and structure for gellan gels[J]. Food Hydrocolloids, 2001, 15(3): 247-252. [35] MAO R, TANG J, SWANSON B G. Water holding capacity and microstructure of gellan gels[J]. Carbohydr Polym, 2001, 46(4): 365-371. [36] BAJAJ I B, SURVASE S A, SAUDAGAR P S, et al. Gellan gum: fermentative production, downstream processing and applications[J]. Food Technol Biotechnol, 2007, 45(4): 341-354. [37] IANNUCELLI S, SOTGIU S. Wet treatments of works of art on paper with rigid gellan gels[J]. Book Paper G Annu, 2010, 29: 25-39. [38] 王晨. 浅析现代意大利纸质文物表面清洁技术的发展——固态水性凝胶在纸本修复中的应用[J]. 中国美术馆, 2015(1): 71-75. WANG C. The development of surface cleaning technology of modern Italy paper relics——Application of solid water gel in paper repair[J]. Natl Art Mus Chin J, 2015(1): 71-75. [39] 陈志亮, 宋鑫. 凝胶在书画文物水渍去除之研究[J]. 古籍保护与修复国际学术研讨会论文海报集, 2016: 352-360. CHEN Z L, SONG X. Study on gel clean the waterlogging on calligraphy and painting relics[J]. Proc Int Conf Preserv Conserv Rar Books, 2016: 352-360. [40] 陈劲柏. Gellan水凝胶在古纸清洁处理中的应用[J]. 国际造纸, 2015(1): 41-47. CHEN J B. Application of Gellan hydrogel in cleaning ancient paper[J]. World Pulp Paper, 2015(1): 41-47. [41] BAGLIONI P, CHELAZZI D, GIORGI R. Nanotechnologies in the conservation of cultural heritage[M]. Spr Neth, 2015. ISBN 978-94-017-9303-2. [42] DOMINGUES J A L, BONELLI N, GIORGI R, et al. Innovative hydrogels based on semi-interpenetrating p(HEMA)/PVP networks for the cleaning of water-sensitive cultural heritage artifacts[J]. Langmuir, 2013, 29(8): 2746-2755. [43] BONINI M, LENZ S, GIORGI R, et al. Nanomagnetic sponges for the cleaning of works of art[J]. Langmuir, 2007, 23(17): 8681. [44] BONINI M, LENZ S, FALLETTA E, et al. Acrylamide-based magnetic nano-sponges: a new smart nanocomposite material[J]. Langmuir, 2008, 24, 12644-12650. [45] GEORGE M, WEISS R G. Chemically reversible organogels: aliphatic amines as “latent” gelators with carbon dioxide[J]. J Am Chem Soc, 2001, 123(42): 10393-10394. [46] GEORGE M, WEISS R G. Chemically reversible organogels via “latent” gelators. aliphatic amines with carbon dioxide and their ammonium carbamates[J]. Langmuir, 2002, 18(19): 7124-7135. [47] GEORGE M, WEISS R G. Detection of pre-sol aggregation and carbon dioxide scrambling in alkylammonium alkylcarbamate gelators by nuclear magnetic resonance[J]. Langmuir, 2003, 19(20): 8168- 8176. [48] CARRETTI E, DEI L, BAGLIONI P, et al. Synthesis and characterization of gels from polyallylamine and carbon dioxide as gellant[J]. J Am Chem Soc, 2003, 125(17): 5121-5129. [49] CARRETTI E, DEI L, MACHERELLI A, et al. Rheoreversible polymeric organogels: the art of science for art conservation[J]. Langmuir, 2004, 20(20): 8414-8418. [50] CARRETTI E, DEI L, WEISS R G. Soft matter and art conservation. rheoreversible gels and beyond[J]. Soft Matter, 2005, 1(1): 17-22. [51] CARRETTI E, DEI L, WEISS R G, et al. A new class of gels for the conservation of painted surfaces [J]. J Cult Her, 2008, 9(4): 386-393. [52] CARRETTI E, NATALI I, MATARRESE C, et al. A new family of high viscosity polymeric dispersions for cleaning easel paintings[J]. J Cult Her, 2010, 11(4): 373-380. [53] NATALI I, CARRETTI E, ANGELOVA L, et al. Structural and mechanical properties of “peelable” organoaqueous dispersions with partially hydrolyzed poly(vinyl acetate)-borate networks: applications to cleaning painted surfaces[J]. Langmuir, 2011, 27: 13226-13235. [54] DOMINGUES J, BONELLI N, GIORGI R, et al. Chemical semi-IPN hydrogels for the removal of adhesives from canvas paintings[J]. Appl Phys A, 2014, 114(3): 705-710. [55] CARRETTI E, DEI L, BAGLIONI P. Solubilization of acrylic and vinyl polymers in nanocontainer solutions. application of microemulsions and micelles to cultural heritage conservation[J]. Langmuir, 2003, 19(19): 7867-7872. [56] CARRETTI E, GIORGI R, BERTI D, et al. Oil-in-water nanocontainers as low environmental impact cleaning tools for works of art: two case studies[J]. Langmuir, 2007, 23: 6396-6403. [57] CARRETTI E, FRATINI E, BERTI D, et al. Nanoscience for art conservation: oil-in-water microemulsions embedded in a polymeric network for the cleaning of works of art[J]. Angew Chem, 2010, 48(47): 8966-8969. [58] BAGLIONI M, RENGSTL D, BERTI D, et al. Removal of acrylic coatings from works of art by means of nanofluids: understanding the mechanism at the nanoscale[J]. Nanoscale, 2010, 2(9): 1723-1732. [59] BAGLIONI M, GIORGI R, BERTI D, et al. Smart cleaning of cultural heritage: a new challenge for soft nanoscience[J]. Nanoscale, 2012, 4(1): 42-53. [60] BAGLIONI M, BERTI D, TEIXEIRA J, et al. Nanostructured surfactant-based systems for the removal of polymers from wall paintings: a small-angle neutron scattering study[J]. Langmuir, 2012, 28(43): 15193-15202. [61] 和玲, 梁军艳, 王娜, 等. 软物质材料用于文化遗产的保护[J]. 中国材料进展, 2012, 31(11): 22-32. HE L, LIANG J Y, WANG N, et al. The application of soft matter in the protection of cultural heritage[J]. Mater Chin, 2012, 31(11): 22-32. [62] 胡丹宁, 孙亚飞, 陶磊, 等. 具有环境响应性的纤维素基水凝胶[J]. 高分子学报, 2020, 51(8): 880-889. HU D N,SUN Y F, TAO L, et al. Environmentally responsive hydrogels based on cellulose[J]. Acta Polym Sin, 2020, 51(8): 880-889. [63] 范治平, 程萍, 张德蒙, 等. 天然高分子基刺激响应性智能水凝胶研究进展[J]. 材料导报, 2020, 34(21): 21012-21025. FAN Z P, CHENG P, ZHANG D M, et al. Progress on stimulus responsive smart hydrogels based on natural polymers[J]. Mater Rep, 2020, 34(21): 21012-21025. [64] 黄河, 李雅瑜, 郭子砚, 等. 双重响应性生物基自修复凝胶的制备及其性能[J]. 应用化学, 2019, 36(2): 146-154. HUANG H, LI Y Y, GUO Z Y, et al. Preparation and properties of dual responsive self-healing bio-based hydrogels[J]. Chinese J Appl Chem, 2019, 36(2): 146-154. [65] 李玉芳, 刘君瑜, 王翔宇, 等. 智能水凝胶药物控释系统的研究进展[J]. 口腔医学, 2020, 40(10): 951- 954, 964. LI Y F, LIU J Y, WANG X Y, et al. Research progress of intelligent hydrogel drug controlled release system[J]. Stomatol, 2020, 40(10): 951-954, 964. [66] 彭涛, 吴泳儿, 薛慧琳, 等. 智能水凝胶的研究进展及应用[J]. 轻纺工业与技术, 2019, 48(1): 33-36. PENG T, WU Y E, XUE H L, et al. Research progress and application of intelligent hydrogels[J]. Text Ind Technol, 2019, 48(1): 33-36. [67] 吴立煌, 李炜镧, 蔡晓军. 刺激响应型水凝胶用于药物控释的研究进展[J]. 生物加工过程, 2020, 18(6): 806-814. WU L H, LI W L, CAI X J. Research progress of stimulus-responsive hydrogels for controlled drug delivery[J]. Chin J Bioprocess Eng, 2020, 18(6): 806-814. [68] 后娟娟, 杨发旺, 薛洋, 等. 刺激响应型超分子凝胶的研究进展[J]. 山东化工, 2020, 49(18): 84-85, 88. HOU J J, YANG F W, XUE Y, et al. Research progress of stimuius-responsive supramolecular gel[J]. Shandong Chem Ind, 2020, 49(18): 84-85, 88. [69] 吴立煌, 蔡晓军. 刺激响应型水凝胶用于组织工程的研究进展[J]. 南京工业大学学报(自然科学版), 2020, 42(6): 690-699. WU L H, CAI X J. Research progress of stimulus-responsive hydrogels for tissue engineering[J]. J Nanjing Tech University (Nat Sci Ed), 2020, 42(6): 690-699. [70] 杨莹, 徐军, 李芳. 温敏水凝胶的研究进展[J]. 西部皮革, 2020, 42(17): 32-33. YANG Y, XU J, LI F. Research progress of thermosensitive hydrogels[J]. Westleather, 2020, 42(17): 32-33. [71] 吉乐涵, 翁滨伟, 竺寅威. 智能水凝胶作为无土栽培基质研究与应用的发展[J]. 农村经济与科技, 2019, 303(14): 14-15. JI L H, WENG B W, ZHU Y W. Development of intelligent hydrogel as research and application of soilless culture substrate [J]. Rur Econ Technol, 2019, 303(14): 14-15. [72] CHANG Y J, ZHOU Q, NING L P, et al. Study on intelligent deformation characteristics of temperature-driven hydrogel actuators prepared via molding and 3D printing[J]. Polym Adv Technol, 2020, 31(9): 1-14. [73] WANG H P, ZHOU S R, GUO L X, et al. Intelligent hybrid hydrogels for rapid in situ detection and photothermal therapy of bacterial infection[J]. ACS Appl Mater Amp; Int, 2020, 12(35): 39685-39694. |