
应用化学 ›› 2021, Vol. 38 ›› Issue (11): 1432-1440.DOI: 10.19894/j.issn.1000-0518.200385
赵云萧, 王光鑫, 陈友绪, 赵桂艳*
收稿日期:
2020-12-21
接受日期:
2021-03-17
出版日期:
2021-11-01
发布日期:
2022-01-01
通讯作者:
*E-mail:gyzhao@lnpu.edu.cn
基金资助:
ZHAO Yun-Xiao, WANG Guang-Xin, CHEN You-Xu, ZHAO Gui-Yan*
Received:
2020-12-21
Accepted:
2021-03-17
Published:
2021-11-01
Online:
2022-01-01
Supported by:
摘要: 淀粉是一种天然高分子材料,具有来源广泛、价格低廉、可再生、可降解等优点,在生物降解高分子材料领域中具有重要地位。 淀粉塑化后较为柔软,类似于弹性体,如果能够用于聚合物的增韧改性,将对降低成本、保护环境有重要意义。 目前,淀粉在聚合物共混改性中主要起填充、降低成本的作用,而作为弹性体增韧聚合物制备高抗冲聚合物复合材料还比较少。 为了改善聚合物/淀粉复合材料的性能,可以采用淀粉塑化改性、淀粉化学改性、添加相容剂、添加弹性体协同淀粉增韧等方法。 本文从以上4个方面总结了聚合物/淀粉复合材料的研究进展,讨论了目前聚合物/淀粉复合材料存在的问题,并对未来的发展方向进行展望。
中图分类号:
赵云萧, 王光鑫, 陈友绪, 赵桂艳. 聚合物/淀粉复合材料的制备与性能研究进展[J]. 应用化学, 2021, 38(11): 1432-1440.
ZHAO Yun-Xiao, WANG Guang-Xin, CHEN You-Xu, ZHAO Gui-Yan. Research Progress on Preparation and Properties of Polymer/Starch Composites[J]. Chinese Journal of Applied Chemistry, 2021, 38(11): 1432-1440.
[1] LELOUP V M, COLONNA P, RING S G. α-Amylase adsorption on starch crystallites[J]. Biotechnol Bioeng, 1991, 38(2): 127-134. [2] GRIFFIN G J L. Degradation of polyethylene in composit burial[J]. Polym Sci Polym Symp, 1976, 57: 281-286. [3] WANG X. W, WANG G X, HUANG D, et al. Degradability comparison of poly(butylene adipate terephthalate) and its composites filled with starch and calcium carbonate in different aquatic environments[J]. J Appl Polym Sci, 2019, 136(2): 1-11. [4] KAHAR A W M, ISMAIL H. High-density polyethylene/natural rubber blends filled with thermoplastic tapioca starch: physical and isothermal crystallization kinetics study[J]. J Vinyl Addit Technol, 2016, 22(3): 191-199. [5] FUCHS J, FELDMANN M, ASSMANN C, et al. Cross-linked hydrophobic starch granules in blends with PLA[J]. Int Polym Process, 2018, 33(1): 89-95. [6] SASANI M, KHORAMNEJADIAN SH, SAFARI R, et al. Effect of benzophenone and zinc stearate on photodegradation of potato starch based low density polyethylene[J]. Bulg Chem Commun, 2016, 48: 15-17. [7] BRANDELERO R P H, ALFARO A T, MARQUES P T, et al. New approach of starch and chitosan films as biodegradable mulching[J]. Rev Virtual Quim, 2019, 11(3): 686-698. [8] JUNG B N, KANG D H, SHIM J K, et al. Physical and mechanical properties of plasticized butenediol vinyl alcohol copolymer/thermoplastic starch blend[J]. J Vinyl Addit Technol, 2019, 25(2): 109-116. [9] ZANELA J, CASAGRANDE M, REIS M O, et al. Biodegradable sheets of starch/polyvinyl alcohol (PVA): effects of PVA molecular weight and hydrolysis degree[J]. Waste Biomass Valorizat, 2019, 10(2): 319-326. [10] ABIOYE A A, OLUWADARE O P, ABIOYE O P. Environmental impact on biodegradation speed and biodegradability of polyethylene and Ipomoea batatas starch blend[J]. Int J Eng Res Afr, 2019, 41: 145-154. [11] OROMIEHIE A R, LARI T T, RABIEE A. Physical and thermal mechanical properties of corn starch/LDPE composites[J]. J Appl Polym Sci, 2013, 127(2): 1128-1134. [12] GARG S, JANA A K. Preparation of LDPE-acetylated/butyrylated starch blend blow films and characterization[J]. Chinese J Polym Sci, 2014, 32(3): 268-279. [13] RAJ M, SAVALIYA R, JOSHI S, et al. Studies on blends of modified starch LDPE[J]. Polym Sci Ser A, 2018, 60(6): 805-815. [14] POURRAHIMI A M, MOHAMMADI N, JAVADI A. The toughness amplification map of poly(vinyl chloride) and its cellulose acetate-compatibilized starch alloys containing core/shell rubber particles: possible transition to super-toughening[J]. J Polym Sci Part B Polym Phys, 2011, 49(5): 327-332. [15] Ohkita T, Lee S H. Thermal degradation and biodegradability of poly(lactic acid)/corn starch biocomposites[J]. J Appl Polym Sci, 2006, 100(4): 3009-3017. [16] LIAO H T, WU C S. Preparation and characterization of ternary blends composed of polylactide, poly(epsilon-caprolactone) and starch[J]. Mat Sci Eng A-Struct, 2009, 515(1/2): 207-214. [17] 边俊甲, 徐明智, 韩常玉, 等. 水辅助加工法制备聚丙撑碳酸酯/淀粉共混物[J]. 应用化学, 2017, 34(8): 885-890. BIAN J J, XU M Z, HAN C Y, et al. poly(propylene carbonate)/starch blends prepared by water-assisted processing[J]. Chinese J Appl Chem, 2017, 34(8): 885-890. [18] JIANG G, XU J H, ZHAO N, et al. Influence of starch oxidization and modification on interfacial interaction, rheological behavior, and properties of poly(propylene carbonate)/starch blends[J]. Polym Plast Technol Eng, 2017, 56(10): 1084-1095. [19] LIU H S, XIE F W, YU L, et al. Thermal processing of starch-based polymers[J]. Prog Polym Sci, 2009, 34(12): 1348-1368. [20] DUFRESNE A, DANIÈLE DUPEYRE, VIGNON M R. Cellulose microfibrils from potato tuber cells: processing and characterization of starch cellulose microfibril composites[J]. J Appl Polym Sci, 2000, 76(14): 2080-2092. [21] PU H Y, CHEN L, LI X X, et al. An oral colon-targeting controlled release system based on resistant starch acetate: synthetization, characterization, and preparation of film-coating pellets[J]. J Agric Food Chem, 2011, 59(10): 5738-5745. [22] 张源, 梁启富, 张小兵, 等. 利用酯化淀粉和油酸甲酯制备高效氯氟氰菊酯水乳剂[J]. 应用化学, 2012, 29(1): 106-112. ZHANG Y, LIANG Q F, ZHANG X B, et al. Preparation of lambda-cyhalothrin oil-in-water emulsion with esterified starch and methyl oleate as emulsifier and solvent[J]. Chinese J Appl Chem, 2012, 29(1): 106-112. [23] GONZALEZ Z, PEREZ E. Effect of acetylation on some properties of rice starch[J]. Starch-Starke, 2002, 54(3/4): 148-154. [24] VOLKERT B, LEHMANN A, GRECO T, et al. A comparison of different synthesis routes for starch acetates and the resulting mechanical properties[J]. Carbohydr Polym, 2010, 79(3): 571-577. [25] ZHOU Y F, WU Y Q, GU J Y, et al. The UV aging properties of maleic anhydride esterified starch/polylactic acid composites[J]. J Wuhan Univ Technol, 2017, 32(4): 971-977. [26] SUN Y J, HU Q E, QIAN J T, et al. Preparation and properties of thermoplastic poly(caprolactone) composites containing high amount of esterified starch without plasticizer[J]. Carbohydr Polym, 2016, 139: 28-34. [27] HAN T L, KUMAR R N, ROZMAN H D, et al. GMA grafted sago starch as a reactive component in ultraviolet radiation curable coatings[J]. Carbohydr Polym, 2003, 54(4): 509-516. [28] HABLOT E, DEWASTHALE S, ZHAO Y J, et al. Reactive extrusion of glycerylated starch and starch-polyester graft copolymers[J]. Eur Polym J, 2013, 49(4): 873-881. [29] 吴航, 冉祥海, 张坤玉, 等.淀粉和生物降解大分子间的半互穿聚合物网络的耐水性研究[J].高等学校化学学报, 2006, 27(5): 975-978. WU H, RAN X H, ZHANG K Y, et al. Water-resistance properties of the semi-IPN between starch and biodegradable PCL or PHBV[J]. Chem J Chin Univ, 2006, 27(5): 975-978. [30] CARVALHO A J F, CURVELO A A S, GANDINI A. Surface chemical modification of thermoplastic starch: reactions with isocyanates, epoxy functions and stearoyl chloride[J]. Ind Crops Prod, 2005, 21(3): 331-336. [31] WONGSAGONSUP R, PUJCHAKARN T, JITRAKBUMRUNG S, et al. Effect of cross-linking on physicochemical properties of tapioca starch and its application in soup product[J]. Carbohydr Polym, 2014, 101: 656-665. [32] DASTIDAR T G, NETRAVALI A N. ‘Green’ crosslinking of native starches with malonic acid and their properties[J]. Carbohydr Polym, 2012, 90(4): 1620-1628. [33] HDIN J, OSTLUND A, NYDEN M. UV induced cross-linking of starch modified with glycidyl methacrylate[J]. Carbohydr Polym, 2010, 79(3): 606-613. [34] 张坤玉, 冉祥海, 吴航, 等. 新型热塑性淀粉的制备和性能[J]. 高等学校化学学报, 2009, 30(8): 1662-1667. ZHANG K Y, RAN X H, WU H, et al. Preparation and properties of new thermoplastic starch using dimethyl sulfoxide as the plasticizer[J]. Chem J Chin Univ, 2009, 30(8): 1662-1667. [35] SMITS A L M, WUBBENHORST M, KRUISKAMP P H, et al. Structure evolution in amylopectin/ethylene glycol mixtures by H-bond formation and phase separation studied with dielectric relaxation spectroscopy[J]. J Phys Chem B, 2001, 105(24): 5630-5636. [36] ARVANITOYANNI I, BILIADERIS C G. Physical properties of polyol-plasticized edible blends made of methyl cellulose and soluble starch[J]. Carbohydr Polym, 1999, 38(1): 47-58. [37] CHAUDHARY D S. Competitive plasticization in ternary plasticized starch biopolymer system[J]. J Appl Polym Sci, 2010, 118(1): 486-495. [38] MA X F, YU J G, MA Y B. Urea and formamide as a mixed plasticizer for thermoplastic wheat flour[J]. Carbohydr Polym, 2005, 60(1): 111-116. [39] MA X F, YU J G. The plastcizers containing amide groups for thermoplastic starch[J]. Carbohydr Polym, 2004, 57(2): 197-203. [40] 杨冬芝, 胡平. 淀粉基生物可降解塑料的制备和表征[J]. 塑料, 2005, 34(3): 51-55. YANG D Z, HU P. Preparation and characterization of starch based biodegradable plastics[J]. Plastics, 2005, 34(3): 51-55. [41] WANG N, YU J, CHANG P R, et al. Influence of formamide and water on the propertiesof thermoplastic starch/poly(lactic acid) blends[J]. Carbohydr Polym, 2008, 71(1): 109-118. [42] SRAZIN P, LI G, ORTS W J, et al. Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch[J]. Polym, 2008, 49(2): 599-609. [43] SANTAYANON R, WOOTTHIKANOKKHAN J. Modification of cassava starch by using propionic anhydride and properties of the starch-blended polyester polyurethane[J]. Carbohydr Polym, 2003, 51(1): 17-24. [44] ZUO Y F, GU J Y, YANG L, et al. Preparation and characterization of dry method esterified starch/polylactic acid composite materials[J]. Int J Biol Macromol, 2014, 64: 174-180. [45] SUN Y J, HU Q E, QIAN J G, et al. Preparation and properties of thermoplastic poly(caprolactone) composites containing high amount of esterified starch without plasticizer[J]. Carbohydr Polym, 2016, 139: 28-34. [46] WU X S. Effect of glycerin and starch crosslinking on molecular compatibility of biodegradable poly(lactic acid)-starch composites[J]. J Polym Environ, 2011, 19(4): 912-917. [47] FUCHS J, FELDMANN M, AβMANN C, et al. Cross-linked hydrophobic starch granules in blends with PLA[J]. Int Polym Process, 2018, 31(1): 89-95. [48] GAO H, HU S, SU F, et al. Mechanical, thermal, and biodegradability properties of PLA/modified starch blends[J]. Polym Compos, 2011, 32(12): 2093-2100. [49] DON T M, CHUNG C Y, LAI S M, et al. Preparation and properties of blends from poly(3-hydroxybutyrate) with poly(vinyl acetate)-modified starch[J]. Polym Eng Sci, 2010, 50(4): 709-718. [50] WANG J, ZHAI W, ZHENG W. Poly(ethylene glycol) grafted starch introducing a novel interphase in poly(lactic acid)/poly(ethylene glycol)/starch ternary composites[J]. J Polym Environ, 2012, 20(2): 528-539. [51] WANG Y, HU Q, LIN T, et al. “Core-shell” starch nanoparticles and their toughening of polylactide[J]. Ind Eng Chem Res, 2018, 57(39): 13048-13054. [52] BHER A, AURAS R, SCHVEZOV C E. Improving the toughening in poly(lactic acid)-thermoplastic cassava starch reactive blends[J]. J Appl Polym Sci, 2017, 135(15): 1-15. [53] KORANTENG E, ZHANG X, WU Z S, et al. Preparation and properties of compatible starch-polycaprolactone composites: effects of hard segments in the polyurethane compatibilizer[J]. Starch-Starke, 2017, 69: 5-6. [54] LIU T, KORANTENG E, WU Z, et al. Structure and properties of a compatible starch-PCL composite using p-phthaloyl chloride-based prepolymer[J]. J Appl Polym Sci, 2017, 134(41). [55] COLLAZO-BIGLIARDI S, ORTEGA-TORO R, CHIRALT A. Using grafted poly(ε-caprolactone) for the compatibilization of thermoplastic starch-polylactic acid blends[J]. React Funct Polym, 2019, 142: 25-35. [56] LÓPEZ O V, NINAGO M D, LENCINA M M S, et al. Starch/poly(ε-caprolactone) graft copolymers synthetized by γ-radiation and their application as compatibilizer in polymer blends[J]. J Polym Environ, 2019, 27(12): 2906-2914. [57] NOIVOIL N, YOKSAN R. Oligo(lactic acid)-grafted starch: a compatibilizer for poly(lactic acid)/thermoplastic starch blend[J]. Int J Biol Macromol, 2020, 160. [58] SHI Q, CHEN C, GAO L, et al. Physical and degradation properties of binary or ternary blends composed of poly(lactic acid), thermoplastic starch and GMA grafted POE[J]. Polym Degrad Stab, 2011, 96(1): 175-182. [59] 张臣, 陆冲, 程树军. 聚乳酸/改性淀粉/甲基丙烯酸缩水甘油醚接枝乙烯-醋酸乙烯共聚物复合材料的制备及性能[J]. 华东理工大学学报(自然科学版), 2016, 42(6): 808-813. ZHANG C, LU C, CHENG S J. Preparation and characterization of poly(lactic acid)/modified starch/glycidyl methacrylate-g-poly(ethylene)-co-(vinyl acetate) composites[J]. J East China Univ Technol Nat Sci Ed, 2016, 42 (6): 808-813. [60] 袁龙, 张伟阳, 陆冲, 等. PBAT含量对PLA/PBAT/MTPS三元共混物形貌及性能的影响[J]. 塑料工业, 2016, 44(2): 88-91. YUAN L, ZHANG W Y, LU C, et al. Effect of PBAT content on the morphology and properties of PLA/PBAT/MTPS ternary blends[J]. Plast Ind, 2016, 44(2): 88-91. [61] ZHOU L R, ZHAO G Y, FENG Y L, et al. Toughening polylactide with polyether-block-amide and thermoplastic starch acetate: Influence of starch esterification degree[J]. Carbohydr Polym, 2015, 127: 79-85. [62] ZHOU L R, ZHOU G Y, JIANG W, et al. Mechanical properties of biodegradable polylactide/poly(ether-block-amide)/thermoplastic starch blends: effect of the crosslinking of starch[J]. J Appl Polym Sci, 2016, 133(2): 1-7. [63] WANG G, LI S, FENG Y, et al. Effectively toughening polypropylene with in situ formation of core-shell starch-based particles[J]. Carbohydr Polym, 2020, 249: 116795. |
[1] | 修海祥, 刘万强, 尹东明, 程勇, 王春丽, 王立民. AB2型Laves相储氢合金研究进展[J]. 应用化学, 2023, 40(5): 640-652. |
[2] | 师文君, 孙中辉, 宋忠乾, 许佳楠, 韩冬雪, 牛利. 钠离子电池层状过渡金属氧化物正极材料研究进展[J]. 应用化学, 2023, 40(4): 583-596. |
[3] | 林锦, 王芳珠, 吕灵灵. 工业原料制备大孔拟薄水铝石及在异佛尔酮选择性加氢中的应用[J]. 应用化学, 2023, 40(1): 79-90. |
[4] | 张丹, 尚润梅, 赵振涛, 李君华, 邢锦娟. V/Ce-Al2O3催化甲醇选择性氧化制备二甲氧基甲烷[J]. 应用化学, 2022, 39(9): 1429-1436. |
[5] | 陈炳刚, 刘三荣, 蒋子江, 于喜飞. 水性聚硅氧烷和聚乙烯醇复合物制备及其作为皮肤屏障材料的性能[J]. 应用化学, 2022, 39(8): 1224-1236. |
[6] | 马轶莲, 胡浩东, 丁营利, 陈相见, 崔亮, 张坤玉. 羟基功能化离聚物与含环氧基团增容剂协同改性聚乳酸[J]. 应用化学, 2022, 39(12): 1870-1879. |
[7] | 王静雯, 吕雅文, 尚亚卓, 刘洪来. 大米淀粉膜的制备及其性能[J]. 应用化学, 2022, 39(11): 1693-1702. |
[8] | 章朱迎, 杜德焰, 周家华, 施冬健, 陈明清. 贻贝启发功能改性的明胶基海绵止血材料的制备与性能[J]. 应用化学, 2022, 39(02): 247-257. |
[9] | 钮占宁, 唐好庆, 郑超, 田甜, 郑立允. 密度泛函理论研究烷基乙醇仲胺溴离子液体表面改性四氧化三铁[J]. 应用化学, 2021, 38(7): 825-835. |
[10] | 崔媛, 周靓, 赫春香. 亚铈试纸的设计与制作[J]. 应用化学, 2020, 37(9): 1087-1092. |
[11] | 魏振业, 孟君玲, 王浩聪, 张文文, 刘孝娟, 孟健. 同型异质表面修饰提高La2NiO4+δ阴极的电催化活性[J]. 应用化学, 2020, 37(8): 939-951. |
[12] | 徐小龙, 王绥军, 金翼, 汪浩. 介孔碳材料抑制锂电池负极枝晶生长[J]. 应用化学, 2020, 37(6): 703-708. |
[13] | 苏风梅, 张达, 梁风. 低温等离子体制备与改性纳米催化材料的研究进展[J]. 应用化学, 2019, 36(8): 882-891. |
[14] | 陈广美,汪志坤,吴立霞,黄毅萍. 丙烯酸酯改性水性聚氨酯/纳米二氧化硅复合材料的制备和性能[J]. 应用化学, 2019, 36(5): 532-538. |
[15] | 张哲烽, 黄小东, 闻利平. 受荷叶自清洁效应启发的手术服表面改性与防污染性能[J]. 应用化学, 2019, 36(1): 34-40. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2651
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 698
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||