应用化学 ›› 2023, Vol. 40 ›› Issue (7): 951-963.DOI: 10.19894/j.issn.1000-0518.230040
收稿日期:
2023-02-28
接受日期:
2023-06-23
出版日期:
2023-07-01
发布日期:
2023-07-19
通讯作者:
梁晰童
基金资助:
Xi-Tong LIANG(), Dan GUO, Ren-Qing CHU, Yun WU, Yuan-Yuan ZHANG
Received:
2023-02-28
Accepted:
2023-06-23
Published:
2023-07-01
Online:
2023-07-19
Contact:
Xi-Tong LIANG
About author:
liangxitong.fshy@sinopec.comSupported by:
摘要:
特种沥青具有高附加值、应用场景专一和开发难度大等特点。本文综述了特种沥青的研究进展,包括改质沥青、浸渍剂沥青、包覆沥青、中间相沥青及其它种类沥青。在研发特种沥青的过程中,研究人员应加强表征手段的应用,进一步明确沥青产品生产过程中的原子、分子及化合物等多尺度的变化规律,从而调控研发和生产过程中的关键工艺条件。针对不同原料特性,建议采取适合的加工工艺,生产不同种类的特种沥青,实现沥青资源的精细化、标准化和高附加值化利用。
中图分类号:
梁晰童, 郭丹, 初人庆, 武云, 张媛媛. 特种沥青的研究进展[J]. 应用化学, 2023, 40(7): 951-963.
Xi-Tong LIANG, Dan GUO, Ren-Qing CHU, Yun WU, Yuan-Yuan ZHANG. Advance in Special Asphalt[J]. Chinese Journal of Applied Chemistry, 2023, 40(7): 951-963.
Standard | I Grade | II Grade |
---|---|---|
Softening point/℃ | 100~115 | 100~120 |
Toluene insoluble/% | 28~34 | ≥26 |
Quinoline insoluble/% | 8~14 | 6~15 |
β resin/% | ≥18 | ≥16 |
Coking value/% | ≥54 | ≥50 |
Ash content/% | ≤0.3 | ≤0.3 |
Water content /% | ≤5 | ≤5 |
表1 改质沥青国家标准(YB/T 5194-93)
Table 1 National standard for modified asphalt (YB/T 5194-93)
Standard | I Grade | II Grade |
---|---|---|
Softening point/℃ | 100~115 | 100~120 |
Toluene insoluble/% | 28~34 | ≥26 |
Quinoline insoluble/% | 8~14 | 6~15 |
β resin/% | ≥18 | ≥16 |
Coking value/% | ≥54 | ≥50 |
Ash content/% | ≤0.3 | ≤0.3 |
Water content /% | ≤5 | ≤5 |
图3 富铁生物炭表面的分子模型示意图。含有N-Fe官能团的活性区,包括酰胺区、胺区、吡啶区和吡咯区,用多边形表示[21]
Fig.3 Schematic molecular model representation of the Fe-rich biochar surface. Active zones containing N-Fe functionals, including amide, amine, pyridine and pyrrole zones, are shown with polygons[21]
Manufacturers | Softening point/℃ | Quinoline insoluble content/% | Toluene insoluble content/% | Fixed carbon content/% | Ash content/% | Density/(g·cm-3) |
---|---|---|---|---|---|---|
Nippon steel | 86 | 0.1 | 14.8 | 51 | 0.05 | — |
Sumitomo | 108 | <0.1 | 14 | 48 | <0.1 | 1.23 |
Mitsubishi heavy industries | 80 | 0.01~0.02 | 15~17 | 50~52 | 0.01 | 1.29 |
1#-GB/T 35074-2018 | 80~95 | ≤0.5 | ≥8.0 | — | ≤0.05 | — |
2#-GB/T 35074-2018 | 80~95 | ≤1.0 | ≥9.0 | — | ≤0.1 | — |
3#-GB/T 35074-2018 | 80~95 | ≤3.0 | ≥10.0 | — | ≤0.2 | — |
表2 浸渍沥青厂家的产品指标与相关国家标准[26]
Table 2 Product specifications of impregnated asphalt manufacturers and relevant national standards[26]
Manufacturers | Softening point/℃ | Quinoline insoluble content/% | Toluene insoluble content/% | Fixed carbon content/% | Ash content/% | Density/(g·cm-3) |
---|---|---|---|---|---|---|
Nippon steel | 86 | 0.1 | 14.8 | 51 | 0.05 | — |
Sumitomo | 108 | <0.1 | 14 | 48 | <0.1 | 1.23 |
Mitsubishi heavy industries | 80 | 0.01~0.02 | 15~17 | 50~52 | 0.01 | 1.29 |
1#-GB/T 35074-2018 | 80~95 | ≤0.5 | ≥8.0 | — | ≤0.05 | — |
2#-GB/T 35074-2018 | 80~95 | ≤1.0 | ≥9.0 | — | ≤0.1 | — |
3#-GB/T 35074-2018 | 80~95 | ≤3.0 | ≥10.0 | — | ≤0.2 | — |
Product standard | Softening point/℃ | Coking value/% | Quinoline insoluble/% | Ash content/% |
---|---|---|---|---|
Low temperature coated asphalt | 110≤SP<170 | 25~49.9 | ≤0.5 | ≤0.08 |
Medium temperature coated asphalt | 170≤SP<220 | 50.0~63.0 | ≤0.5 | ≤0.08 |
Medium and high temperature coated asphalt | 220≤SP<270 | 63.1~73.9 | ≤0.5 | ≤0.08 |
High temperature coated asphalt | 270≤SP<280 | 74.0~80.0 | ≤0.5 | ≤0.08 |
表3 包覆沥青的产品标准
Table 3 Product standard for coated asphalt
Product standard | Softening point/℃ | Coking value/% | Quinoline insoluble/% | Ash content/% |
---|---|---|---|---|
Low temperature coated asphalt | 110≤SP<170 | 25~49.9 | ≤0.5 | ≤0.08 |
Medium temperature coated asphalt | 170≤SP<220 | 50.0~63.0 | ≤0.5 | ≤0.08 |
Medium and high temperature coated asphalt | 220≤SP<270 | 63.1~73.9 | ≤0.5 | ≤0.08 |
High temperature coated asphalt | 270≤SP<280 | 74.0~80.0 | ≤0.5 | ≤0.08 |
图4 (a)乙烯焦油的气相色谱质谱图, (b)建议的乙烯焦油有效利用路线, (c)不同温度下轻质油的蒸馏收率[39]
Fig.4 (a) Gas chromatography mass spectrometry spectrum of ethylene tar, (b) proposed route for effective utilization of ethylene tar and (c) distillation yield of light oil under different temperatures[39]
Manufacturers | Softening point/℃ | Quinoline insoluble content/% | Toluene insoluble content/% | Coking value/% | Ash content/% |
---|---|---|---|---|---|
Grade I | 100~115 | 8~14 | 28~34 | ≥54 | ≤0.3 |
Grade II | 100~120 | 6~15 | 26 | ≥50 | ≤0.3 |
Angang asphalt | 105~125 | 5~15 | >25 | 46~65 | <0.3 |
Kaifeng carbon plant | 103~107 | 12~15 | 28~31 | >57 | <0.3 |
Rutgers Germany | 80~90 | 6~14 | 25~36 | >50 | <0.3 |
Mitsubishi Corporation of Japan | 90~115 | 8~14 | 31~38 | >52 | <0.3 |
Great Lakes Corporation of America | 102 | 13.2 | 27 | — | <0.3 |
表4 粘结剂沥青相关产品标准
Table 4 Standards for products related to binder asphalt
Manufacturers | Softening point/℃ | Quinoline insoluble content/% | Toluene insoluble content/% | Coking value/% | Ash content/% |
---|---|---|---|---|---|
Grade I | 100~115 | 8~14 | 28~34 | ≥54 | ≤0.3 |
Grade II | 100~120 | 6~15 | 26 | ≥50 | ≤0.3 |
Angang asphalt | 105~125 | 5~15 | >25 | 46~65 | <0.3 |
Kaifeng carbon plant | 103~107 | 12~15 | 28~31 | >57 | <0.3 |
Rutgers Germany | 80~90 | 6~14 | 25~36 | >50 | <0.3 |
Mitsubishi Corporation of Japan | 90~115 | 8~14 | 31~38 | >52 | <0.3 |
Great Lakes Corporation of America | 102 | 13.2 | 27 | — | <0.3 |
1 | 谢秋生. 碳-石墨产业链的发展报告[R]. 第十一届国际针状焦及应用市场高峰论坛, 2020. |
XIE Q S. Carbon-graphite industry chain development report[R]. The 11th International Needle Coke and Application Market Summit Forum, 2020. | |
2 | 周云辉, 谷小虎, 林雄超. 煤焦油沥青基炭材料的研究进展[J]. 炭素技术, 2019, 38(2): 1-5. |
ZHOU Y H, GU X H, LIN X C. Research development of carbon materials from coal tar pitch[J]. Carbon Tech, 2019, 38(2): 1-5. | |
3 | 李海宁, 张艳飞, 李珊. 2020-2021中国沥青市场年度报告[R]. 卓创资讯, 2021. |
LI H N, ZHANG Y F, LI S. China asphalt market annual report 2020-2021[R]. Zhuochuang Information, 2021. | |
4 | 李琳琳. 煤沥青供需分析及小结展望[R]. 百川盈孚, 2019. |
LI L L. Coal asphalt supply and demand analysis and Summary Outlook[R]. Baichuan Yingfu, 2019. | |
5 | 孔劲媛, 熊国跃, 刘挺嵩. 我国沥青市场主要供应商及竞争格局分析[J]. 当代石油化工, 2014, 8: 37-43. |
KONG J Y, XIONG G Y, LIU T S. Analysis on main suppliers and competition pattern of domestic bitumen market[J]. Pet Petrochem Today, 2014, 8: 37-43. | |
6 | 吴岳. 减压渣油生产90号氧化沥青试验[J]. 山东化工, 2016, 45(4): 69-72. |
WU Y. Test of producing No.90 oxidized asphalt from vacuum residue[J]. Shandong Chem Ind, 2016, 45(4):69-72. | |
7 | 徐建国, 张冠群, 李聪, 等. 乙烯焦油制备道路沥青新工艺[J]. 现代化工, 2015, 35(6): 70-73. |
XU J G, ZHANG G Q, LI C, et al. A novel process of preparing asphalt for road construction from ethylene tar[J]. Modern Chem Ind, 2015, 35(6): 70-73. | |
8 | HU H, WU M. Heavy oil-derived carbon for energy storage applications[J]. J Mater Chem A, 2020, 8(15): 7066-7082. |
9 | HE L, LIN F, LI X, et al. Interfacial sciences in unconventional petroleum production: from fundamentals to applications[J]. Chem Soc Rev, 2015, 44(15): 5446-5494. |
10 | 任秀娟. 改质沥青新工艺技术研究与应用[J]. 化学工程与装备, 2022, 4: 39-40. |
REN X J. Research and application of new process technology of modified asphalt[J]. Chem Eng Equip, 2022, 4: 39-40. | |
11 | 曹雪燕, 张鲁斌, 图雅, 等. 提高改质沥青合格率的措施[J]. 包钢科技, 2020, 46(4): 16-19. |
CAO X Y, ZHANG L B, TU Y, et al. Measures for improving qualification rate of modified pitch[J]. Sci Tech Baotou Steel, 2020,46(4): 16-19. | |
12 | 刘君红, 曹雪燕, 张鲁斌, 等. 釜式热缩聚工艺生产改质沥青存在的问题及对策[J]. 四川化工, 2022, 25(4): 32-35. |
LIU J H,CAO X Y, ZHANG L B, et al. The problem of modified bitumen in the Kettle-type heat shrink process and countermeasure[J]. Sichuan Chem Ind, 202, 25(4): 32-35. | |
13 | 李晓旭, 穆春丰, 廖志强, 等. 管式炉法改质沥青连续生产工艺[J]. 燃料与化工, 2020, 51(1): 36-38. |
LI X X, MU C F, LIAO Z Q, et al. Continuous production process of modified pitch by tubular furnace method[J]. Fuel Chem Processes, 2020, 51(1): 36-38. | |
14 | 朱玉萍, 杨文迪, 唐忠斌. 提高改质沥青质量技术研究[J]. 四川冶金, 2019, 41(6): 50-54. |
ZHU Y P, YANG W D, TANG Z B. Research on improving the quality of modified asphalt[J]. Sichuan Metall, 2019, 41(6): 50-54. | |
15 | 张树福, 廖志强, 单春华. 改质沥青工艺的选择[J]. 燃料与化工, 2019, 50(4): 38-40. |
ZHANG S F, LIAO Z Q, SHAN C H. Process selection for modified pitch production[J]. Fuel Chem Processes, 2019, 50(4): 38-40. | |
16 | 徐芹. 焦油改质沥青质量的优化控制与提升[J]. 煤化工, 2020, 48(1): 70-72. |
XU Q. Optimization control and improvement of coal tar modified asphalt quality[J]. Coal Chem Ind, 2020, 48(1): 70-72. | |
17 | 李琦, 乔海燕, 韩冬云, 等. 中低温煤焦油沥青催化聚合制备改质沥青[J]. 煤炭转化, 2022, 45(2): 84-92. |
LI Q, QIAO H Y, HAN D Y, et al. Preparation of modified asphalt by catalytic polymerization of medium-low temperature coal tar asphalt[J]. Coal Conver, 2022, 45(2): 84-92. | |
18 | 邵博, 孙海权, 徐蓬勃, 等. 一种管式炉加热中温沥青生产改质沥青的新工艺[J]. 燃料与化工, 2021, 52(4): 37-38. |
SHAO B, SUN H Q, XU P B, et al. A new process for producing modified pitch from medium temperature pitch heated by tube furnace[J]. Fuel Chem Processes, 2021, 52(4): 37-38. | |
19 | 马成香. 改质沥青存在的质量问题及对策[J]. 燃料与化工, 2019, 50(5): 40-42. |
MA C X. Quality problems in modified pitch and its countermeasures[J]. Fuel Chem Ind, 2019, 50(5): 40-42. | |
20 | ZHANG F, HU C. Preparation and properties of high viscosity modified asphalt[J]. Poly Compos, 2017, 38(5): 936-946. |
21 | MOUSAVI M, ALDAGARI S, CROCKER M, et al. Iron-rich biochar to adsorb volatile organic compounds emitted from asphalt-surfaced areas[J]. ACS Sustainable Chem Eng, 2023, 11(7): 2885-2896. |
22 | ECHEVERRIA M, ABREU C, ECHEVERRÍA C, et al. Spent tyre valorisation: new polymer modified asphalts for steel protection in an aggressive marine environment[J]. RSC Adv, 2015, 5(96): 76057-76064. |
23 | PEREZ C, SCHOEGGL F, TAYLOR S, et al. Phase behavior of mixtures of bitumen and n-butane[J]. Energy Fuels, 2019, 33(9): 8530-8543. |
24 | MARTIN F, FINI E, BUEHLER M, et al. Molecular asphaltene models based on Clar sextet theory[J]. RSC Adv, 2015, 5(1): 753-759. |
25 | 臧娜, 和凤祥,王海洋, 等. 高附加值煤沥青制备及应用研究进展[J]. 辽宁化工, 2021, 50(8): 1166-1171. |
ZANG N, HE F X, WANG H Y, et al. Research progress on preparation and application of high value-added coal pitch[J]. Liaoning Chem Ind, 2021, 50(8): 1166-1171. | |
26 | 刘国库, 胡威威, 刘锋杰, 等. 利用中间相沥青副产物制备浸渍沥青试验研究[J]. 工业技术, 2020, 11: 66-68. |
LIU G K, HU W W, LIU F J, et al. Experimental study on preparation of impregnated asphalt from mesophase asphalt by-products[J]. Ind Technol, 2020, 11: 66-68. | |
27 | 陈文燕, 罗来龙. 石油基浸渍沥青的制备综述[J]. 石油炼制与化工, 2007, 38(10): 50-54. |
CHEN W Y, LUO L L. A review of the preparation of impregnating pitch from petroleum base feedstock[J]. Pet Proces Petrochem, 2007, 38(10): 50-54. | |
28 | 杨云, 许祥军, 夏剑忠. 浸渍沥青性能的影响因素研究[J]. 上海化工, 2013, 38(12): 11-13. |
YANG Y, XU X J, XIA J Z.Study on performance influencing factors of impregnating asphalt[J]. Shanghai Chem Ind, 2013, 38(12): 11-13. | |
29 | 黄健, 闫慧青, 肖玮. 不同沥青包覆球形天然石墨负极材料结构和性能研究[J]. 炭素技术, 2018, 37(2): 42-47. |
HUANG J, YAN H Q, XIAO W. Study on the structure and properties of spherical natural graphite with different pitch-coating[J]. Carbon Tech, 2018, 37(2): 42-47. | |
30 | 张怀平, 吕春祥, 李开喜, 等. 氧化沥青化学结构及成焦行为的研究[J]. 新型炭材料, 2001, 16(2): 49-53. |
ZHANG H P, LV C X, LI K X, et al. Chemical structure and carbonization behaviors of air-blown pitches[J]. New Carbon Mater, 2001, 16(2): 49-53. | |
31 | 肖宜华, 李荐, 王利华. 沥青包覆改性对废旧石墨负极材料结构与电化学性能的影响[J]. 轻金属, 2022, 5: 53-58. |
XIAO Y H, LI J, WANG L H. Effect of asphalt coating modification on structure and electrochemical properties of waste graphite anode materials[J]. Light Met, 2022, 5: 53-58. | |
32 | 王永邦, 汤嘉伟, 乔文明, 等. 沥青包覆对天然石墨性能影响研究[J]. 炭素技术, 2023, 42(1): 29-33. |
WANG Y B, TANG J W, QIAO W M, et al. Influence of pitch coating amount on the properties of natural graphite[J]. Carbon Tech, 2023, 42(1): 29-33. | |
33 | 马晓龙, 田志强, 王菲, 等. 利用煤系软沥青制备包覆沥青的研究[J]. 燃料与化工, 2021, 52(1): 29-31. |
MA X L, TIAN Z Q, WANG F, et al. Study on the preparation of coated pitch with coal series soft asphalt[J]. Fuel Chem Processes, 2021, 52(1): 29-31. | |
34 | 陈月亮, 王佳兵, 尹勇勇, 等. 包覆沥青的制备方法及市场分析[J]. 化工管理, 2023, 5: 26-29. |
CHEN Y L, WANG J B, YIN Y Y, et al. Preparation methods and market analysis of coating pitch[J]. Chem Enterprise Manage, 2023, 5: 26-29. | |
35 | 武云, 初人庆. 中间相沥青的应用研究进展[J]. 当代化工, 2020, 49(6): 1189-1192. |
WU Y, CHU R Q. Research progress in the application of mesophase pitch[J]. Contemp Chem Ind, 2020, 49(6): 1189-1192. | |
36 | 武云, 初人庆, 郭丹. 中间相沥青的制备方法研究进展[J]. 当代化工, 2020, 49(2): 418-421. |
WU Y, CHU R Q, GUO D. Research progress in the preparation of mesophase pitch[J]. Contemp Chem Ind, 2020, 49(2): 418-421. | |
37 | 李春霞, 徐泽进, 乔曼, 等. 催化裂化油超临界萃取组分热缩聚生成中间相沥青的定量研究[J]. 石油学报(石油加工), 2015, 31(1): 145-152. |
LI C X, XU Z J, QIAO M, et al. Quantitative analysis of mesophase development upon heating of the supercritical fluid extraction of FCC slurry[J]. Acta Petrolei Sin (Pet Process Sect), 2015, 31(1): 145-152. | |
38 | LI M, ZHANG Y, YU S, et al. Preparation and characterization of petroleum-based mesophase pitch by thermal condensation with in-process hydrogenation[J]. RSC Adv, 2018, 8(53): 30230-30238. |
39 | GE C, YANG H, WANG J, et al. Highly effective utilization of ethylene tar for mesophase development via a molecular fractionation process[J]. RSC Adv, 2016, 6(1): 796-804. |
40 | 吴丽娟, 熊烨, 李松涛. 可溶性中间相沥青的研究进展[J]. 山东化工, 2021, 11: 53-54. |
WU L J, XIONG Y, LI S T. Advance in soluble mesophase pitch[J]. Shandong Chem Ind, 2021, 11: 53-54. | |
41 | YU Y, LU Y, CHENG X, et al. Micro-kinetics of pitch polymerization with regards to molecular weight distribution[J]. React Chem Eng, 2022, 7(7): 1660-1670. |
42 | ADAMS J, ELWARDANY M, PLANCHE E, et al. Diagnostic techniques for various asphalt refining and modification methods[J]. Energy Fuels, 2019, 33(4): 2680-2698. |
43 | XIE S, LI Q, KARKI P, et al. Lignin as renewable and superior asphalt binder modifier[J]. ACS Sustainable Chem Eng, 2017, 5(4): 2817-2823. |
44 | PAHLAVAN F, GHOLIPOUR A, ZHOU T, et al. Cleaner asphalt production by suppressing emissions using phenolic compounds[J]. ACS Sustainable Chem Eng, 2023, 11(7): 2737-2751. |
45 | YU C, YANG Q. Multiscale interfacial interactions in carbon nanotube-asphalt nanocomposites: implications for asphalt pavement materials[J]. ACS Appl Nano Mater, 2023, 6(9): 7715-7730. |
46 | 王玉东, 孔宪明. 高软化点氧化沥青对改性沥青性质的影响[J]. 石油沥青, 2008, 22(1): 45-48. |
WANG Y D, KONG X M. Effect of high soft-poingting catalytic oxidation asphalt on properties of asphalt[J]. Pet Asphalt, 2008, 22(1): 45-48. | |
47 | 郭皎河, 吴晓颖, 傅丽, 等. 不同工艺制备的沥青性能研究[J]. 中国胶粘剂, 2020, 29(5): 284-288. |
GUO J H, WU X Y, FU L, et al, Study on properties of asphalt prepared by different processes[J]. China Adhes, 2020, 29(5): 284-288. | |
48 | 高义. 氧化沥青装置原料的最佳选择[J]. 贵州化工, 2005, 30(5): 46-47. |
GAO Y. The optimum choice of raw materials for oxidized pitch plant[J]. Guizhou Chem Ind, 2005, 30(5): 46-47. | |
49 | 丁湛, 邹鹏, 栗培龙. 胶粉在改性沥青中的物化行为分析[J]. 应用化学, 2017, 34(2): 204-210. |
DING Z, ZOU P, LI P L. Analysis of physical and chemical behavior of crumb rubber in asphalt[J]. Chin J Appl Chem, 2017, 34(2): 204-210. | |
50 | 王金莹, 曲江英, 李杰兰, 等. 二次包覆法制备煤沥青基硅/碳复合物及其锂离子电池性能[J]. 应用化学, 2020, 37(5):562-569. |
WANG J Y, QU J Y, LI J L, et al. Two-step coating synthesis of silicon/carbon composite based on coal tar pitch and its lithium battery performance[J]. Chin J Appl Chem, 2020, 37 (5): 562-569. | |
51 | CHOI J,KO S,JEON Y. Preparation of petroleum impregnating pitches from pyrolysis fuel oil using two-step heat treatments[J]. Carbon Lett, 2019, 29: 369-376. |
52 | XIONG J, MA W, GE M, et al. Preparation of high quality impregnating pitch by new route[J]. Mater Rev Innov, 2014, 18(2): 924-927. |
53 | YAO P, CEN J, FANG M, et al. A study on the preparation of pitch-based high-strength columnar activated carbon and mechanism of phenol adsorption from aqueous solution[J]. RSC Adv, 2018, 8(31): 17558-17568. |
54 | GAO H, DING L, BAI H, et al. Pitch-based hyper-cross-linked polymers with high performance for gas adsorption[J]. J Mater Chem A, 2016, 4(42): 16490-16498. |
55 | ZHAO X, BAI X, YANG W, et al. Fabrication of MnO/C composites utilizing pitch as the soft carbon source for rechargeable Li-ion batteries[J]. 2016, 40(12): 9986-9992. |
56 | JALILOV A, RUAN G, HWANG C, et al. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture[J]. ACS Appl Mater Interfaces, 2015, 7(2): 1376-1382. |
57 | GUAN T, LI K, ZHAO J, et al. Template-free preparation of layer-stacked hierarchical porous carbons from coal tar pitch for high performance all-solid-state supercapacitors[J]. J Mater Chem A, 2017, 5(30): 15869-15878. |
58 | LI Y, HU Y, LI H, et al. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries[J]. J Mater Chem A, 2016, 4(1): 96-104. |
59 | ESCAMILLA A, ROLAND A, GIRAUD S, et al. Pitch-based carbon/nano-silicon composite, an efficient anode for Li-ion batteries[J]. RSC Adv, 2019, 9(19): 10546-10553. |
60 | YOON H, HINTON Z, HEINZMAN J, et al. The effect of pyrolysis on the chemical, thermal and rheological properties of pitch[J]. Soft Matter, 2021, 17(39): 8925-8936. |
61 | ZHANG Y, LIU X, TIAN M, et al. Generation and characterization of coal-based needle coke produced by the co-carbonization of coal liquefaction pitch and anthracene oil[J]. RSC Adv, 2022, 12(40): 25860-25871. |
62 | LIU S, SHAN L, LI G, et al. Molecular-based asphalt oxidation reaction mechanism and aging resistance optimization strategies based on quantum chemistry[J]. Mater Design, 2022, 223: 111225. |
63 | LIANG X, CHEN K, XUE D. A flexible and ultrahigh energy density capacitor via enhancing surface/interface of carbon cloth supported colloids[J]. Adv Energy Mater, 2018, 8(16): 1703329. |
64 | XU M, YI J, FENG D, et al. Analysis of adhesive characteristics of asphalt based on atomic force microscopy and molecular dynamics simulation[J]. ACS Appl Mater Interfaces, 2016, 8(19): 12393-12403. |
65 | MOUSAVI M, OLDHAM D, FINI E. Using fundamental material properties to predict the moisture susceptibility of the asphalt binder: polarizability and a moisture-induced shear-thinning index[J]. ACS Appl Bio Mater, 2020, 3(11): 7399-7407. |
66 | LIANG X, XUE D. Ce(OH)3 as a novel negative electrode material for supercapacitors[J]. Nanotechnology, 2020, 31(37): 374003. |
67 | LIANG X, XUE D. Electronegativity principles in metal oxides based supercapacitors[J]. Nanotechnology, 2020, 31(7): 074001. |
68 | LIU F, WANG Q, ZHANG X. Investigation of asphalt oxidation kinetics aging mechanism using molecular dynamic simulation[J]. Construc Build Mater, 2023, 377: 131159. |
69 | XIAO J, ZHANG J, ZHANG H, et al. Preparation and characterization of organic red mud and its application in asphalt modification[J]. Construc Build Mater, 2023, 367: 130269. |
70 | XU R, YI Z, SONG M, et al. Boosting sodium storage performance of hard carbons by regulating oxygen functionalities of the cross-linked asphalt precursor[J]. Carbon, 2023, 206: 94-104. |
71 | CAO W. The molecular mechanisms of plasticizers in rejuvenating oxidized asphalt: a preliminary study[J]. Mater Design, 2023, 226: 111677. |
72 | 石雪建, 刘万强, 王春丽, 等. 钾离子电池用Sb基负极材料研究进展[J]. 应用化学, 2023, 40(2): 210-228. |
SHI X J, LIU W Q, WANG C L, et al. Research progress of sb-based anode materials for potassium ion batteries[J]. Chin J Appl Chem, 2023, 40(2): 210-228. |
[1] | 金光日, 朱吉凯, 钟克利, 陈铁, 金龙一. 9,10-双-(对-(甲氧基二缩三乙二醇基)苯基乙炔基)蒽的合成、自组装及其光谱分析[J]. 应用化学, 2015, 32(2): 177-182. |
[2] | 彭晓春, 伍建华, 肖竹平, 谢碧桃, 吴芳, 赵寒霜. 含不同核心第一代π-共轭不对称树状化合物的合成[J]. 应用化学, 2013, 30(08): 888-896. |
[3] | 汪一帆, 周维友, 方筱, 陈群. 镁铝水滑石负载MnO-4催化氧化乙苯合成苯乙酮[J]. 应用化学, 2012, 29(09): 1017-1022. |
[4] | 黄学亮, 朱方华, 杨军校, 张林. 二乙基硅氧烷双苯并环丁烯的合成及其聚合物性能[J]. 应用化学, 2011, 28(06): 640-644. |
[5] | 刘上春, 黄亚文, 杨军校, 朱方华, 李波, 张林. Heck反应合成1,2-二芳基乙烯类衍生物的新方法[J]. 应用化学, 2011, 28(05): 526-530. |
[6] | 刘军辉, 李军, 张爱平, 刘俊龙, 高爽. 反应控制相转移催化环氧化苯乙烯[J]. 应用化学, 2010, 27(07): 769-772. |
[7] | 吕艳阳, 刘小玉, 曹俊. 四(对甲氧基苯基)卟啉钐配合物的合成及光谱[J]. 应用化学, 2010, 27(06): 691-694. |
[8] | 左传鹏,阳志高,尹笃林,袁治冶,徐琼,毛丽秋. 椰壳炭磺酸催化剂制备及其对杯[4]芳烃合成反应的催化应用[J]. 应用化学, 2010, 27(02): 237-239. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||