[1] | Zhou C G,Wang S M,Zhao Z Y, et al. A Facet-Dependent Schottky-Junction Electron Shuttle in a BiVO4{010}-Au-Cu2O Z-Scheme Photocatalyst for Efficient Charge Separation[J]. Adv Funct Mater,2018,28(31):1801214-1801224. | [2] | Yang J H,Guo Y Z,Jiang R B, et al. High-Efficiency “Working-in-Tandem” Nitrogen Photofixation Achieved by Assembling Plasmonic Gold Nanocrystals on Ultrathin Titania Nanosheets[J]. J Am Chem Soc,2018,140(27):8497-8508. | [3] | Patnaik S,Swain G,Parida K M. Highly Efficient Charge Transfer Through a Double Z-Scheme Mechanism by a Cu-Promoted MoO3/g-C3N4 Hybrid Nanocomposite with Superior Electrochemical and Photocatalytic Performance[J]. Nanoscale,2018,10(13):5950-5964. | [4] | YAO Guoying,LIU Qinglu,ZHAO Zongyan. Applications of Localized Surface Plasmon Resonance Effect in Photocatalysis[J]. Prog Chem,2019,31(4):516-535(in Chinese). 姚国英,刘清路,赵宗彦. 局域表面等离子体共振效应在光催化技术中的应用[J]. 化学进展,2019,31(4):516-535. | [5] | Tanaka A,Hashimoto K,Kominami H. A Very Simple Method for the Preparation of Au/TiO2 Plasmonic Photocatalysts Working Under Irradiation of Visible Light in the Range of 600~700 nm[J]. Chem Commun,2017,53(35):4759-4762. | [6] | Cheng W R,Su H,Tang F M, et al. Synergetic Enhancement of Plasmonic Hot-Electron Injection in Au Cluster-Nanoparticle/C3N4 for Photocatalytic Hydrogen Evolution[J]. J Mater Chem A,2017,5(37):19649-19655. | [7] | Kumari G,Zhang X Q,Devasia D, et al. Watching Visible Light-Driven CO2 Reduction on a Plasmonic Nanoparticle Catalyst[J]. ACS Nano,2018,12(8):8330-8340. | [8] | LIU Bing,GONG Huili,LIU Rui, et al. One-Synthesis of TiO2-Au Composite and Its Performance for Photocatalytic Hydrogen Evolution[J]. Chinese J Appl Chem,2019,36(9):1076-1084(in Chinese). 刘兵,宫辉力,刘锐,等. 一步法制备二氧化钛-金复合材料及其光解水制氢性能[J]. 应用化学,2019,36(9):1076-1084. | [9] | QUAN Jingjing,QIN Dongdong,TAO Chunlan. Preparation and Photoelectrochemical Properties of Au Nanorods/Grapite Phase Carbon Nitride Composites[J]. Chinese J Appl Chem,2019,35(5):574-581(in Chinese). 权晶晶,秦冬冬,陶春兰,等. 金纳米棒/石墨相氮化碳复合薄膜的制备及其光电化学性能[J]. 应用化学,2018,35(5):574-581. | [10] | Gavade N L,Babar S B,Kadam A N, et al. Fabrication of M@CuxO/ZnO(M=Ag,Au) Heterostructured Nanocomposite with Enhanced Photocatalytic Performance under Sunlight[J]. Ind Eng Chem Res,2017,56(49):14489-14501. | [11] | Yang L,Pillai S,Green M A. Can Plasmonic Al Nanoparticles Improve Absorption in Triple Junction Solar Cells?[J]. Sci Rep,2015,5:11852-11864. | [12] | He W J,Sun Y J,Jiang G M, et al. Defective Bi4MoO9/Bi Metal Core/Shell Heterostructure: Enhanced Visible Light Photocatalysis and Reaction Mechanism[J]. Appl Catal B:Environ,2018,239:619-627. | [13] | Wang H,Zhang W D,Li X W, et al. Highly Enhanced Visible Light Photocatalysis and in situ FT-IR Studies on Bi Metal@defective BiOCl Hierarchical Microspheres[J]. Appl Catal B:Environ,2018,225:218-227. | [14] | Dong F,Zhao Z W,Sun Y J, et al. An Advanced Semimetal Organic Bi Spheres g-C3N4 Nanohybrid with SPR-Enhanced Visible-Light Photocatalytic Performance for NO Purification[J]. Environ Sci Technol,2015,49(20):12432-12440. | [15] | Qu L L,Luo Z J,Tang C. One Step Synthesis of Bi@Bi2O3@Carboxylate-Rich Carbon Spheres with Enhanced Photocatalytic Performance[J]. Mater Res Bull,2013,48(11):4601-4605. | [16] | LI Wenjin,YAO Weilong,XU Jiaxin, et al. Preparation and Photocatalytic Properties of Ho3+ Doping BiFeO3[J]. Chinese J Appl Chem,2019,36(1):91-96(in Chinese). 李文进,姚威龙,徐嘉鑫,等. Ho3+掺杂铁酸铋的制备及光催化性[J]. 应用化学,2019,36(1):91-96. | [17] | Li Y Y,Dang L Y,Han L F, et al. Iodine-sensitized Bi4Ti3O12/TiO2 Photocatalyst with Enhanced Photocatalytic Activity on Degradation of Phenol[J]. J Mol Catal A:Chem,2013,379(15):146-151. | [18] | Nyholm R,Berndtsson A,Martensson N. Core Level Binding Energies for the Elements Hf to Bi(Z=72-83)[J]. J Phys C:Solid Sate Phys,1980,13:1091-1096. | [19] | Xie F X,Mao X M,Fan C M, et al. Facile Preparation of Sn-Doped BiOCl Photocatalyst with Enhanced Photocatalytic Activity for Benzoic Acid and Rhodamine B Degradation[J]. Mater Sci Semicond Process,2014,27:380-389. | [20] | Wang L L,Ma W H,Fang Y F, et al. Bi4Ti3O12 Synthesized by High Temperature Solid Phase Method and It's Visible Catalytic Activity[J]. Procedia Environ Sci,2013,18:547-558. | [21] | Lazǎr C,Burzo E,Neumann M. XPS Study of RNi4B Compounds, Where R Nd, Tb, Dy, Ho and Er[J]. J Optoelectron Adv M,2008,10(4):780-782. | [22] | Ooka C,Yoshida H,Horio M, et al. Adsorptive and Photocatalytic Performance of TiO2 Pillared Montmorillonite in Degradation of Endocrine Disruptors Having Different Hydrophobicity[J]. Appl Catal B:Environ,2003,41:313-321. | [23] | McMahon J M,Schatz G C,Gray S K. Plasmonics in the Ultraviolet with the Poor Metals Al, Ga, in, Sn, Tl, Pb, and Bi[J]. Phys Chem Chem Phys,2013,15:5415-5423. | [24] | Wang Z,Jiang C L,Huang R, et al. Investigation of Optical and Photocatalytic Properties of Bismuth Nanospheres Prepared by a Facile Thermolysis Method[J]. J Phys Chem C,2014,118(2):1155-1160. | [25] | Toudert J,Serna R,Jiménez De Castro M. Exploring the Optical Potential of Nano-Bismuth:Tunable Surface Plasmon Resonances in the Near Ultraviolet-to-Near Infrared Range[J]. J Phys Chem C,2012,116(38):20530-20539. | [26] | CAO Tieping,LI Yuejun,MEI Zhemin. Preparation of Bi/TiO2 Composite NFs with Visible-light Photocatalytic Activity[J]. Chinese J Inorg Chem,2017,33(12):2225-2232(in Chinese). 曹铁平,李跃军,梅泽民,等. 单质Bi/TiO2复合纳米纤维制备及可见光催化性能[J]. 无机化学学报,2017,33(12):2225-2232. | [27] | Zhang M Y,Shao C L,Liu Y C, et al. One-Dimensional Bi2MoO6/TiO2 Hierarchical Heterostructures with Enhanced Photocatalytic Activit[J]. CrystEngComm,2012,14(2):605-612. | [28] | LIU Jia,PAN Rongrong,ZHANG Erhuan, et al. Mechanistic Understanding of Plasmon-Induced Hot Electron Injection for Photocatalytic and Photoelectrochemical Solar-to-Fuel Generation[J]. Chinese J Appl Chem,2018,35(8):890-901(in Chinese). 刘佳,潘容容,张二欢,等. 表面等离子共振热电子注入机理及在光催化与光电催化应用中的研究进展[J]. 应用化学,2018,35(8):890-901. | [29] | Long R,Prezhdo O V. Instantaneous Generation of Charge-Separated State on TiO2 Surface Sensitized with Plasmonic Nanoparticles[J]. J Am Chem Soc,2014,136(11):4343-4354. |
|