应用化学 ›› 2016, Vol. 33 ›› Issue (8): 867-875.DOI: 10.11944/j.issn.1000-0518.2016.08.160174

• 综合评述 • 上一篇    下一篇

新型超级电容器的研发进展

梁晰童ab,潘伟a,陈昆峰a,薛冬峰a*()   

  1. a 中国科学院长春应用化学研究所,稀土资源利用国家重点实验室 长春 130022
    b 中国科学院大学 北京 100049
  • 收稿日期:2016-04-25 接受日期:2016-06-12 出版日期:2016-07-21 发布日期:2016-07-21
  • 通讯作者: 薛冬峰
  • 基金资助:
    国家自然科学基金资助项目(51125009,91434118)国家自然科学基金创新研究群体项目(21521092)中国科学院国际合作局对外合作重点项目(121522KYS820150009)吉林省科技发展计划项目(20160520002JH)

Advance in Research and Development of Novel Supercapacitors

LIANG Xitongab,PAN Weia,CHEN Kunfenga,XUE Dongfenga*()   

  1. a State Key Laboratory of Rare Earth Resource Utilization,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences,Changchun 130022,China
    b University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2016-04-25 Accepted:2016-06-12 Published:2016-07-21 Online:2016-07-21
  • Contact: XUE Dongfeng
  • Supported by:
    Supported by the National Natural Science Foundation of China(No.51125009, No.91434118), the National Natural Science Foundation for Creative Research Group(No.21521092), the External Cooperation Program of BIC, Chinese Academy of Sciences(No.121522KYS820150009), Jilin Provincial Science and Technology Development Program of China(No.20160520002JH)

摘要:

传统超级电容器受低能量密度的限制,在当今器件研发中需更加关注电极材料结构-组成-性能研究。 本文总结了新型赝电容器的发展历程及其研发过程中存在的挑战与解决措施,着重从胶体离子超级电容器电极材料等新型的电极材料和氧化还原电解质两个方面进行综述。 原位合成的胶体离子超级电容器电极材料比非原位合成的电极材料具有更高的反应活性,并且以近似离子的状态存在,有效增加了电极材料的比容量。 氧化还原电解质的使用在不改变电极材料的前提下,进一步提高了超级电容器的能量密度。 初步介绍了新型锂离子电容器。 锂离子电容器同时使用电池型材料和电容型材料,可提高其能量密度。 依据当前超级电容器的研发现状,未来有望将电池材料和电容器材料结合使用,进而形成电池电容器或电容电池,使其同时具有高的能量密度和功率密度。

关键词: 超级电容器, 胶体离子电极材料, 氧化还原电解质, 电池电容器

Abstract:

Traditional supercapacitors have low energy density, which in most cases hinders their further practical applications, therefore, people more focus on studies of the structure-composition-property relationship of electrode materials towards high performance supercapacitors during present research and development of electrochemical energy storage devices. This article summarizes the history of research and development of novel supercapacitors, as well as their challenges and strategies, with the aim to find novel supercapacitor systems via searching for high efficient electrode materials and electrolytes. Novel electrode materials and redox electrolytes are thus particularly emphasized herein, for example, some promising electrode materials of colloidal ion supercapacitor systems have shown some advantages compared to those ex-situ prepared electrode materials, which indicates high electrochemical reactivity existing in the colloidal state of constituent transitional and rare earth metal cations. Furthermore, we also introduce novel lithium-ion supercapacitors as some promising research and development directions. On the basis of the current status of research and development of supercapacitors, it is highly expected to combine the advantages of both battery electrode materials and supercapacitor electrode materials towards the so-called supercapattery or supercabattery, which may be dominant in the field of future electrochemical energy storage devices.

Key words: supercapacitor, colloidal ion electrode materials, redox electrolyte, supercapattery