应用化学 ›› 2016, Vol. 33 ›› Issue (7): 766-773.DOI: 10.11944/j.issn.1000-0518.2016.07.150384

• 研究论文 • 上一篇    下一篇

聚乳酸的非等温结晶行为

边新超ab,冯立栋ab*(),陈志明b,陈学思ab   

  1. a 中国科学院长春应用化学研究所,生态环境高分子材料重点实验室 长春 130022
    b 浙江海正生物材料股份有限公司 浙江 台州 318000
  • 收稿日期:2015-10-30 接受日期:2016-01-15 出版日期:2016-06-30 发布日期:2016-06-30
  • 通讯作者: 冯立栋
  • 基金资助:
    国家自然科学基金资助项目(51573178,51303176)

Non-Isothermal Crystallization Behavior of Polylactide

BIAN Xinchaoab,FENG Lidongab*(),CHEN Zhimingb,CHEN Xuesiab   

  1. a Key Laboratory of Polymer Ecomaterials,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,China
    b Zhejiang Hisun Biomaterials Limited Corporation,Taizhou,Zhejiang 318000,China
  • Received:2015-10-30 Accepted:2016-01-15 Published:2016-06-30 Online:2016-06-30
  • Contact: FENG Lidong
  • Supported by:
    Supported by the National Natural Science Foundation of China(No.51573178, No.51303176)

摘要:

用差示扫描量热法(DSC)研究聚乳酸(PLA)从熔体及玻璃态为初始条件下的非等温结晶行为,采用Ozawa方程、Mo法、Khanna法和Kissinger法对结晶动力学参数进行计算处理。 实验结果表明,这几种方法均适合处理PLA的非等温结晶过程,而Khanna法提出的结晶速率系数(CRC)能够方便地评价PLA相对结晶速率的大小。 PLA从玻璃态升温结晶比从熔体降温结晶容易得多,升温过程有利于晶核生成,而降温有利于晶体生长。 升温结晶时,升温速率2.0 ℃/min时,结晶焓(ΔHc)达到最大为27.1 J/g。 从熔体等速降温过程中,随着冷却速率的降低ΔHc单调增加,冷却速率为0.25 ℃/min时ΔHc增加到28.3 J/g。 在较低温度下从玻璃态结晶,主要表现为异相成核的二维生长方式。 在较高的温度下从玻璃态升温结晶及从熔体冷却结晶时,以均相成核的三维生长方式结晶为主。 与升温过程相比,冷却不利于晶核的生成,所以导致冷却过程总体ΔHc偏低,扩散活化能偏大。

关键词: 聚乳酸, 非等温结晶, Ozawa方程, Khanna法, 聚合物熔体, 玻璃态

Abstract:

The non-isothermal crystallization behavior of polylactide(PLA) was investigated by differential scanning calorimetry(DSC), including heating from glass state and cooling from melted state for the PLA polymer. Crystallization kinetic parameters were calculated using Ozawa equation, Mo method, Khanna law and Kissinger method. These methods are all suitable for handling non-isothermal crystallization process of PLA.The crystallization rate coefficient(CRC) proposed by Khanna can easily evaluate the relative crystallization rate of PLA. In contrast to the cooling process from melted state, the heating process of PLA from glass state stimulates crystal nucleus generation, while cooling process is conducive to the growth of crystals. When the heating rate is at 2.0 ℃/min, crystallization enthalpy(ΔHc) reaches the maximum of 27.1 J/g. When the crystallization starts from the melted state, ΔHc increases with the decreasing cooling rate. The cooling rate is lowered to 0.25 ℃/min, and ΔHc is increased to 28.3 J/g. At a lower temperature, the process of crystallization from the glass state, is mainly heterogeneous nucleation of two-dimensional crystal growth pattern. At higher temperature, crystallization from the glass state and melted polymer largely attributes to the homogeneous nucleation for three-dimensional growth pattern. Compared with the heating process, the cooling process is not conducive to the formation of crystal nucleus, so that in the cooling process ΔHc is much lower, and the diffusion activation energy is a little higher than that in the heating process.

Key words: polylactide, non-isothermal crystallization, Ozawa equation, Khanna method, polymeric melted state, glass state