Chinese Journal of Applied Chemistry ›› 2024, Vol. 41 ›› Issue (5): 637-658.DOI: 10.19894/j.issn.1000-0518.230369
• Review • Previous Articles
Bing-Jie WAN1, Xiao-Xue LIU1, Lin-Guang QI1, Chang-Chao JIA1(), Jian LIU1,2()
Received:
2023-11-24
Accepted:
2024-03-15
Published:
2024-05-01
Online:
2024-06-03
Contact:
Chang-Chao JIA,Jian LIU
About author:
jiachangchao@qust.edu.cnSupported by:
CLC Number:
Bing-Jie WAN, Xiao-Xue LIU, Lin-Guang QI, Chang-Chao JIA, Jian LIU. Research Progress of TiO2-Based Photocatalytic CO2 Reduction[J]. Chinese Journal of Applied Chemistry, 2024, 41(5): 637-658.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.230369
Fig.1 Publications (A) and citations (B) of TiO2-based photocatalysts in the field of CO2 reduction during last 10 years (The data are achieved on the search results from the Web of Science 2023.11)
Product | Reaction | E/V(vs.NHE) |
---|---|---|
Hydrogen | 2H2O + 2e- | -0.41 |
Methane | CO2 + 8H+ + 8e - | -0.24 |
Carbon monoxide | CO2 + 2H + + 2e - | -0.51 |
Methanol | CO2 + 6H + + 6e - | -0.38 |
Formic acid | CO2 + 2H + + 2e - | -0.61 |
Methanal | CO2 + 4H+ + 4e - | -0.48 |
Ethylene | 2CO2 + 12H+ + 12e - | -0.34 |
Ethane | 2CO2 + 14H + + 14e - | -0.27 |
Ethanol | 2CO2 + 12H+ + 12e- | -0.33 |
Oxalate | 2CO2 + 2H + + 2e - | -0.87 |
Table 1 Reaction potential energy required for CO2 conversion to form different products
Product | Reaction | E/V(vs.NHE) |
---|---|---|
Hydrogen | 2H2O + 2e- | -0.41 |
Methane | CO2 + 8H+ + 8e - | -0.24 |
Carbon monoxide | CO2 + 2H + + 2e - | -0.51 |
Methanol | CO2 + 6H + + 6e - | -0.38 |
Formic acid | CO2 + 2H + + 2e - | -0.61 |
Methanal | CO2 + 4H+ + 4e - | -0.48 |
Ethylene | 2CO2 + 12H+ + 12e - | -0.34 |
Ethane | 2CO2 + 14H + + 14e - | -0.27 |
Ethanol | 2CO2 + 12H+ + 12e- | -0.33 |
Oxalate | 2CO2 + 2H + + 2e - | -0.87 |
Fig.5 (A) Schematic diagram of Pt/o-PCN three-phase photocatalytic system; (B) Photocatalytic activity and selectivity of Pt/o-PCN to carbon products[46]; (C) Schematic diagram of Ag-TiO2 three-phase photocatalytic system supported by gas-liquid-solid interface; (D) CO2 reduction products at Ag-TiO2-GDL[47]; (E) Schematic diagram of an integrated photoenzyme catalytic system with a hydrophilic and hydrophobic layer on the membrane; (F) Schematic diagram of CO2 reduction catalyzed by photoenzyme[52]
Fig.6 (A) Molecular configuration of TiO2; (B) illustration of the pentagonal {Ti(Ti5)} building units; the Ti—O core structures of (C) PTC-49V and (D) PTC-49H; illustration of the highlighted anatase-type {Ti8O14} moiety in (E) PTC-49H and (F) anatase TiO2[58]; (G) Molecular structure diagram of Ti42[59]
Fig.7 (A) Structural and polyhedral relationships between PTi16, PTi12 and original heteroatom Keggin structure[60] and (B) the morphology and molecular structure of Ti6, Ti8-Fcdc and Ti6-Fcdc[62]
Fig.8 (A) Schematic illustration of the classical Lewis acid-base pair; (B) Reactivity of FLPs in single-site Bi3+ substituted Bi x In2–x O3[70]; (C) c-TiO2@a-TiO2-x (OH)y heterogeneous surface FLPs[71] and (D) the surface of TiO2-x is hindered by Lewis acid-base pairs[72]
Photocatalyst | Light source for photocatalytic reaction | Product | Yield/(μmol·g-1·h-1) | Selectivity/% | Year∣Ref. | |
---|---|---|---|---|---|---|
Cu/3DOM-TiO2 | Gas-solid | 300 W Xe lamp with a UV filter (320~780 nm) | CH4 | 43.15 | 83.3 | 2022∣[ |
Cu/3DOM-TiO2 | Solid-liquid | 300 W Xe lamp with a UV filter (320~780 nm) | C2H4 | 6.99 | 58.4 | 2022∣[ |
Cu/TiO2 | Gas-solid | 300 W Xe lamp UV enhanced | CO | 15.27 | 95.9 | 2022∣[ |
Cu NCs/TiO2 | Gas-solid | 300 W Xe lamp | CO | 40.3 | 93 | 2022∣[ |
H-TiO2@Cu | Gas-solid | 300 W Xe lamp | CO | 23.5 | 84.5 | 2021∣[ |
Cu-O/Ti0.91O2-SL | Solid-liquid | 300 W Xe lamp | CO | 61.0 | 84.4 | 2023∣[ |
Cu-Ti-OVs/Ti0.91O2-SL | Solid-liquid | 300 W Xe lamp | C2H4 C3H8 | 7.6 13.8 | 17.8 32.4 | 2023∣[ |
Au/TiO2 | Gas-solid | 300 W Xe lamp with an AM 1.5G filter | CO | 608 | 99 | 2022∣[ |
Au-TiO2-C3N4 | Gas-solid | 300 W Xe lamp, 420 nm cut-off | CH4 | 140 | -- | 2018∣[ |
Au-NG-TiO2 | Gas-solid | 300 W Xe lamp with an AM 1.5G filter | CH4 | 83.72 | -- | 2022∣[ |
AuCu-TiO2-x NSs | Gas-solid | 300 W Xe lamp | CH4 | 22.47 | 90.55 | 2021∣[ |
Cu0.8Au0.2/TiO2 | Gas-solid | 300 W Xe lamp with an AM 1.5G filter | CH4 C2H4 | 3578.9 369.8 | 77.1 11.9 | 2021∣[ |
Ag/TiO2 | Solid-liquid | 300 W Xe lamp | CO | 0.58 | 100 | 2021∣[ |
Ag-TiO2-GDL | Gas-liquid-solid | 300 W Xe lamp with a UV filter (<400 nm) | CO CH4 | 205.1 100.6 | 65.4 32.0 | 2022∣[ |
Ag-TiO2 | Solid-liquid | 300 W Xe lamp with a UV filter (<400 nm) | CO CH4 | 23.9 14.5 | 19.4 11.8 | 2022∣[ |
1% Pt/TiO2 nanocrystals | Gas-solid | 300 W Xe lamp with a UV filter (320~780 nm) | CH4 | 4.6 | -- | 2017∣[ |
Pt-TiO2-x | Gas-solid | 300 W Xe lamp | CO CH4 | 54.2 66.4 | -- | 2019∣[ |
0.4% Pt/Ti3+-TiO2 | Gas-solid | 300 W Xe lamp with an AM 1.5G filter | CH4 | 80 | -- | 2017∣117] |
Pd0.2Ag0.04/TiO2 | Gas-solid | 300 W Xe lamp with a UV filter (<400 nm) | CO C2H5OH CH4 | 17 13 4 | -- | 2017∣[ |
Pd-HPP-TiO2 | Gas-solid | 300 W Xe lamp with a UV filter (325~780 nm) | CO CH4 | 34 48 | -- 59 | 2022∣[ |
Pd-HCPs-TiO2 | Gas-solid | 300 W Xe lamp | CH4 | 237.4 | 99.9 | 2021∣[ |
Table 2 Photocatalytic CO2 reduction performance of TiO2 loaded with different metals
Photocatalyst | Light source for photocatalytic reaction | Product | Yield/(μmol·g-1·h-1) | Selectivity/% | Year∣Ref. | |
---|---|---|---|---|---|---|
Cu/3DOM-TiO2 | Gas-solid | 300 W Xe lamp with a UV filter (320~780 nm) | CH4 | 43.15 | 83.3 | 2022∣[ |
Cu/3DOM-TiO2 | Solid-liquid | 300 W Xe lamp with a UV filter (320~780 nm) | C2H4 | 6.99 | 58.4 | 2022∣[ |
Cu/TiO2 | Gas-solid | 300 W Xe lamp UV enhanced | CO | 15.27 | 95.9 | 2022∣[ |
Cu NCs/TiO2 | Gas-solid | 300 W Xe lamp | CO | 40.3 | 93 | 2022∣[ |
H-TiO2@Cu | Gas-solid | 300 W Xe lamp | CO | 23.5 | 84.5 | 2021∣[ |
Cu-O/Ti0.91O2-SL | Solid-liquid | 300 W Xe lamp | CO | 61.0 | 84.4 | 2023∣[ |
Cu-Ti-OVs/Ti0.91O2-SL | Solid-liquid | 300 W Xe lamp | C2H4 C3H8 | 7.6 13.8 | 17.8 32.4 | 2023∣[ |
Au/TiO2 | Gas-solid | 300 W Xe lamp with an AM 1.5G filter | CO | 608 | 99 | 2022∣[ |
Au-TiO2-C3N4 | Gas-solid | 300 W Xe lamp, 420 nm cut-off | CH4 | 140 | -- | 2018∣[ |
Au-NG-TiO2 | Gas-solid | 300 W Xe lamp with an AM 1.5G filter | CH4 | 83.72 | -- | 2022∣[ |
AuCu-TiO2-x NSs | Gas-solid | 300 W Xe lamp | CH4 | 22.47 | 90.55 | 2021∣[ |
Cu0.8Au0.2/TiO2 | Gas-solid | 300 W Xe lamp with an AM 1.5G filter | CH4 C2H4 | 3578.9 369.8 | 77.1 11.9 | 2021∣[ |
Ag/TiO2 | Solid-liquid | 300 W Xe lamp | CO | 0.58 | 100 | 2021∣[ |
Ag-TiO2-GDL | Gas-liquid-solid | 300 W Xe lamp with a UV filter (<400 nm) | CO CH4 | 205.1 100.6 | 65.4 32.0 | 2022∣[ |
Ag-TiO2 | Solid-liquid | 300 W Xe lamp with a UV filter (<400 nm) | CO CH4 | 23.9 14.5 | 19.4 11.8 | 2022∣[ |
1% Pt/TiO2 nanocrystals | Gas-solid | 300 W Xe lamp with a UV filter (320~780 nm) | CH4 | 4.6 | -- | 2017∣[ |
Pt-TiO2-x | Gas-solid | 300 W Xe lamp | CO CH4 | 54.2 66.4 | -- | 2019∣[ |
0.4% Pt/Ti3+-TiO2 | Gas-solid | 300 W Xe lamp with an AM 1.5G filter | CH4 | 80 | -- | 2017∣117] |
Pd0.2Ag0.04/TiO2 | Gas-solid | 300 W Xe lamp with a UV filter (<400 nm) | CO C2H5OH CH4 | 17 13 4 | -- | 2017∣[ |
Pd-HPP-TiO2 | Gas-solid | 300 W Xe lamp with a UV filter (325~780 nm) | CO CH4 | 34 48 | -- 59 | 2022∣[ |
Pd-HCPs-TiO2 | Gas-solid | 300 W Xe lamp | CH4 | 237.4 | 99.9 | 2021∣[ |
Fig.10 The electronic interactions at a single Cu atom and the surrounding TiO2: (A) Schematic alignments of the d orbital splitting of a metal atom in a coordinate complex; (B) Structure and schematic illustration of the density of states of Cu1/TiO2 and pristine TiO2; (C) DFT energetics of oxygen vacancy formation[124]
Fig.11 Schematic illustration of electron-hole pair separation under different types of heterojunction: (A) Typr-Ⅱ? scheme; (B) Traditional Z-scheme; (C) All-solid state Z-scheme; (D) Direct Z-scheme; (E) S-scheme photoresponse
Fig.12 (A) Schematic diagram of superhydrophobic TiO2 nanowire system and reaction interface microenvironment; (B) Schematic diagram of hydrophobic TiO2 photocatalytic CO2 reduction reaction system and (C) Schematic diagram of CO2 solubility in three-phase and two-phase systems[149]
1 | HUSSAIN I, JALIL A, HASSAN N, et al. Recent advances in catalytic systems for CO2 conversion to substitute natural gas (SNG): perspective and challenges[J]. J Energy Chem, 2021, 62: 377-407. |
2 | ZHAO Y F, WATERHOUSE G I N, CHEN G B, et al. Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks[J]. Chem Soc Rev, 2019, 48(7): 1972-2010. |
3 | ZHANG H N, LI Y F, WANG J Z, et al. An unprecedent hydride transfer pathway for selective photocatalytic reduction of CO2 to formic acid on TiO2[J]. Appl Catal B: Environ, 2021, 284: 119692. |
4 | SUN Z Y, MA T, TAO H C, et al. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials[J]. Chem, 2017, 3(4): 560-587. |
5 | WEI J, YAO R W, HAN Y, et al. Towards the development of the emerging process of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons[J]. Chem Soc Rev, 2021, 50(19): 10764-10805. |
6 | LI M J, SUN Z X, HU Y H. Catalysts for CO2 reforming of CH4: a review[J]. J Mater Chem A, 2021, 9(21): 12495-12520. |
7 | WAGNER A, SAHM C D, REISNER E. Towards molecular understanding of local chemical environment effects in electro-and photocatalytic CO2 reduction[J]. Nat Catal, 2020, 3(10): 775-786. |
8 | WANG J, GUO R T, BI Z X, et al. A review on TiO2- x-based materials for photocatalytic CO2 reduction[J]. Nanoscale, 2022, 14(32): 11512-11528. |
9 | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
10 | INOUE T, FUJISHIMA A, KONISHI S, et al. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J]. Nature, 1979, 277(5698): 637-638. |
11 | CAO S W, LOW J X, YU J G, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Adv Mater, 2015, 27(13): 2150-2176. |
12 | WANG S L, XU M, PENG T Y, et al. Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion[J]. Nat Commun, 2019, 10(1): 676. |
13 | JIANG Z, XU X H, MA Y H, et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction[J]. Nature, 2020, 586(7830): 549-554. |
14 | NGUYEN N T, ALTOMARE M, YOO J, et al. Efficient photocatalytic H2 evolution: controlled dewetting-dealloying to fabricate site-selective high-activity nanoporous Au particles on highly ordered TiO2 nanotube arrays[J]. Adv Mater, 2015, 27(20): 3208-3215. |
15 | NGUYEN T P, NGUYEN D L T, NGUYEN V H, et al. Recent advances in TiO2-based photocatalysts for reduction of CO2 to fuels[J]. Nanomaterials, 2020, 10(2): 337. |
16 | LI D, ZHAO Y, MIAO Y, et al. Accelerating electron-transfer dynamics by TiO2-immobilized reversible single-atom copper for enhanced artificial photosynthesis of urea[J]. Adv Mater, 2022, 34(51): 2207793. |
17 | FANG S, RAHAMAN M, BHARTI J, et al. Photocatalytic CO2 reduction[J]. Nat Rev Methods Primers, 2023, 3(1): 61. |
18 | YANG S, ZHANG W, PAN G, et al. Photocatalytic Co-reduction of N2 and CO2 with CeO2 catalyst for urea synthesis[J]. Angew Chem Int Ed, 2023, 62(43): e202312076. |
19 | HORVáTH E, ROSSI L, MERCIER C, et al. Photocatalytic nanowires-based air filter: towards reusable protective masks[J]. Adv Funct Mater, 2020, 30(40): 2004615. |
20 | BERNADET S, TAVERNIER E, TA D M, et al. Bulk photodriven CO2 conversion through TiO2@Si(HIPE) monolithic macrocellular foams[J]. Adv Funct Mater, 2019, 29(9): 1807767. |
21 | ZHANG P, SUI X Y, WANG Y, et al. Surface Ru—H bipyridine complexes-grafted TiO2 nanohybrids for efficient photocatalytic CO2 methanation[J]. J Am Chem Soc, 2023, 145(10): 5769-5777. |
22 | PARK J H, KIM J H. Selective CO2 photoconversion on low-coordinate TiO2[J]. Chem, 2020, 6(10): 2435-2436. |
23 | BAI S, YIN W J, WANG L L, et al. Surface and interface design in cocatalysts for photocatalytic water splitting and CO2 reduction[J]. RSC Adv, 2016, 6(62): 57446-57463. |
24 | CHANG X X, WANG T, GONG J L. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts[J]. Energy Environ Sci, 2016, 9(7): 2177-2196. |
25 | CHAUHAN D K, SHARMA N, KAILASAM K. A critical review on emerging photocatalysts for syngas generation via CO2 reduction under aqueous media: a sustainable paradigm[J]. Mater Adv, 2022, 3(13): 5274-5298. |
26 | JIA C C, CHEN H S, YANG P. Construction of hollow waxberry-like rutile-/anatase-TiO2/SnO2 towards enhanced photocatalysis[J]. J Ind Eng Chem, 2018, 58: 278-289. |
27 | HERRMANN J M. Photocatalysis fundamentals revisited to avoid several misconceptions[J]. Appl Catal B: Environ, 2010, 99(3/4): 461-468. |
28 | WENG B, QI M Y, HAN C, et al. Photocorrosion inhibition of semiconductor-based photocatalysts: basic principle, current development, and future perspective[J]. ACS Catal, 2019, 9(5): 4642-4687. |
29 | MEISSNER D, MEMMING R, KASTENING B. Photoelectrochemistry of cadmium sulfide. 1. reanalysis of photocorrosion and flat-band potential[J]. J Phys Chem, 2002, 92(12): 3476-3483. |
30 | BAHNEMANN D W, KORMANN C, HOFFMANN M R. Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study[J]. J Phys Chem, 1987, 91(14): 3789-3798. |
31 | SONG C S. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing[J]. Catal Today, 2006, 115(1/2/3/4): 2-32. |
32 | BENSON E E, KUBIAK C P, SATHRUM A J, et al. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels[J]. Chem Soc Rev, 2009, 38(1): 89-99. |
33 | XIE S J, ZHANG Q H, LIU G D, et al. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures[J]. Chem Commun, 2016, 52(1): 35-59. |
34 | JIANG S Y, ZHAO K, AL-MAMUN M, et al. Design of three-dimensional hierarchical TiO2/SrTiO3 heterostructures towards selective CO2 photoreduction[J]. Inorg Chem Front, 2019, 6(7): 1667-1674. |
35 | CHEN C, WANG T, YAN K, et al. Photocatalytic CO2 reduction on Cu single atoms incorporated in ordered macroporous TiO2 toward tunable products[J]. Inorg Chem Front, 2022, 9(18): 4753-4767. |
36 | LI N, LIU J, LIU J J, et al. Adenine components in biomimetic metal-organic frameworks for efficient CO2 photoconversion[J]. Angew Chem Int Ed, 2019, 58(16): 5226-5231. |
37 | JIA G G, SUN M Z, WANG Y, et al. Asymmetric coupled dual-atom sites for selective photoreduction of carbon dioxide to acetic acid[J]. Adv Funct Mater, 2022, 32(41): 2206817. |
38 | LAM E, REISNER E. A TiO2-Co(terpyridine)2 photocatalyst for the selective oxidation of cellulose to formate coupled to the reduction of CO2 to syngas[J]. Angew Chem Int Ed, 2021, 60(43): 23306-23312. |
39 | YOSHINO S, IWASE A, YAMAGUCHI Y, et al. Photocatalytic CO2 reduction using water as an electron donor under visible light irradiation by Z-scheme and photoelectrochemical systems over (CuGa)0.5ZnS2 in the presence of basic additives[J]. J Am Chem Soc, 2022, 144(5): 2323-2332. |
40 | KUEHNEL M F, ORCHARD K L, DALLE K E, et al. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals[J]. J Am Chem Soc, 2017, 139(21): 7217-7223. |
41 | XIN Z K, HUANG M Y, WANG Y, et al. Reductive carbon-carbon coupling on metal sites regulates photocatalytic CO2 reduction in water using ZnSe quantum dots[J]. Angew Chem Int Ed, 2022, 61(31): e202207222. |
42 | JIA C C, WAN B J, LIU W G, et al. Microenvironment modulation of ultrathin bronze-phase TiO2 nanosheets for highly selective photocatalytic CO2 reduction in water[J]. Adv Funct Mater, 2024, 34(9): 2311663. |
43 | LI J, CHEN G X, ZHU Y Y, et al. Efficient electrocatalytic CO2 reduction on a three-phase interface[J]. Nat Catal, 2018, 1(8): 592-600. |
44 | WANG P, ZHAO J Q, SHI R, et al. Efficient photocatalytic aerobic oxidation of bisphenol a via gas-liquid-solid triphase interfaces[J]. Mater Today Energy, 2022, 23: 100908. |
45 | IIZUKA K, WATO T, MISEKI Y, et al. Photocatalytic reduction of carbon dioxide over ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent[J]. J Am Chem Soc, 2011, 133(51): 20863-20868. |
46 | LI A, CAO Q, ZHOU G Y, et al. Three-phase photocatalysis for the enhanced selectivity and activity of CO2 reduction on a hydrophobic surface[J]. Angew Chem Int Ed, 2019, 58(41): 14549-14555. |
47 | HUANG H N, SHI R, LI Z H, et al. Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas-water boundary[J]. Angew Chem Int Ed, 2022, 61(17): e202200802. |
48 | LIU J, ANTONIETTI M. Bio-inspired NADH regeneration by carbon nitride photocatalysis using diatom templates[J]. Energy Environ Sci, 2013, 6(5): 1486-1493. |
49 | JU D X, LIN G, XIAO H, et al. Investigation of water-stable perovskite DMASnIxBr3- x for photoenzyme catalysis in aqueous solution [J]. Sol RRL, 2020, 4(12): 2000559. |
50 | WANG Y C, LIU H, PAN Q Y, et al. Construction of thiazolo[5,4-d]thiazole-based two-dimensional network for efficient photocatalytic CO2 reduction[J]. ACS Appl Mater Interfaces, 2020, 12(41): 46483-46489. |
51 | ZHANG Y Y, LIU J. Bioinspired photocatalytic NADH regeneration by covalently metalated carbon nitride for enhanced CO2 reduction[J]. Chem-Eur J, 2022, 28(55): e202201430. |
52 | LIN G, ZHANG Y Y, HUA Y T, et al. Bioinspired metalation of the metal-organic framework MIL-125-NH2 for photocatalytic NADH regeneration and gas-liquid-solid three‐phase enzymatic CO2 reduction[J]. Angew Chem Int Ed, 2022, 61(31): e202206283. |
53 | JIAO X C, LI X D, JIN X Y, et al. Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction[J]. J Am Chem Soc, 2017, 139(49): 18044-18051. |
54 | JIA C C, ZHANG X, YANG P. Construction of anatase/rutile TiO2 hollow boxes for highly efficient photocatalytic performance[J]. Appl Surf Sci, 2018, 430: 457-465. |
55 | SCHRAUZER G N, GUTH T D. Photolysis of water and photoreduction of nitrogen on titanium dioxide[J]. J Am Chem Soc, 2002, 99(22): 7189-7193. |
56 | ZHANG G Y, LI W Y, LIU C Y, et al. Titanium-oxide host clusters with exchangeable guests[J]. J Am Chem Soc, 2017, 140(1): 66-69. |
57 | TAN Y X, WANG F, ZHANG J. Design and synthesis of multifunctional metal-organic zeolites[J]. Chem Soc Rev, 2018, 47(6): 2130-2144. |
58 | FAN X, WANG J H, WU K F, et al. Isomerism in titanium‐oxo clusters: molecular anatase model with atomic structure and improved photocatalytic activity[J]. Angew Chem Int Ed, 2018, 58(5): 1320-1323. |
59 | GAO M Y, WANG F, GU Z G, et al. Fullerene-like polyoxotitanium cage with high solution stability[J]. J Am Chem Soc, 2016, 138(8): 2556-2559. |
60 | LI N, LIU J, LIU J J, et al. Self-assembly of a phosphate-centered polyoxo-titanium cluster: discovery of the heteroatom keggin family[J]. Angew Chem Int Ed, 2019, 58(48): 17260-17264. |
61 | GAO M Y, BAI H, CUI X F, et al. Precisely tailoring heterometallic polyoxotitanium clusters for the efficient and selective photocatalytic oxidation of hydrocarbons[J]. Angew Chem Int Ed, 2022, 61(52): e202215540. |
62 | LIU J J, LI N, SUN J W, et al. Ferrocene-functionalized polyoxo-titanium cluster for CO2 photoreduction[J]. ACS Catal, 2021, 11(8): 4510-4519. |
63 | JIANG Z, XU X H, MA Y H, et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction[J]. Nature, 2020, 586(7830): 549-554. |
64 | LEWIS G N. Valence and the structure of atoms and molecules[M]. American Chemical Monograph Series, The Chemical Catalog Co., Inc., New York 1923: 172. |
65 | WELCH G C, JUAN R R S, MASUDA J D, et al. Reversible, metal-free hydrogen activation[J]. Science, 2006, 314(5802): 1124-1126. |
66 | MCCAHILL J S J, WELCH G C, STEPHAN D W. Reactivity of “frustrated lewis pairs”: three-component reactions of phosphines, a borane, and olefins[J]. Angew Chem Int Ed, 2007, 46(26): 4968-4971. |
67 | STEPHAN D W. The broadening reach of frustrated Lewis pair chemistry[J]. Science, 2016, 354(6317): aaf7229. |
68 | WANG Q L, MIAO Z R, ZHANG Y F, et al. Photocatalytic reduction of CO2 with H2O mediated by Ce-tailored bismuth oxybromide surface frustrated lewis pairs[J]. ACS Catal, 2022, 12(7): 4016-4025. |
69 | GHUMAN K K, WOOD T E, HOCH L B, et al. Illuminating CO2 reduction on frustrated Lewis pair surfaces: investigating the role of surface hydroxides and oxygen vacancies on nanocrystalline In2O3- x(OH)y[J]. Phys Chem Chem Phys, 2015, 17(22): 14623-14635. |
70 | YAN T J, LI N, WANG L L, et al. Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation[J]. Nat Commun, 2020, 11(1): 6095. |
71 | LI Z, MAO C L, PEI Q J, et al. Engineered disorder in CO2 photocatalysis[J]. Nat Commun, 2022, 13(1): 7205. |
72 | JIA C C, KAN X N, ZHANG X, et al. Construction of frustrated lewis pairs on TiO2- x derived from perovskite for enhanced photocatalytic CO2 reduction[J]. Chem Eng J, 2022, 427: 131554. |
73 | ZHANG S, HUANG Z Q, MA Y, et al. Solid frustrated-Lewis-pair catalysts constructed by regulations on surface defects of porous nanorods of CeO2[J]. Nat Commun, 2017, 8(1): 15266. |
74 | ZHANG S, XIA Z M, ZOU Y, et al. Interfacial frustrated lewis pairs of CeO2 activate CO2 for selective tandem transformation of olefins and CO2 into cyclic carbonates[J]. J Am Chem Soc, 2019, 141(29): 11353-11357. |
75 | CHEN X B, LIU L, YU P Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018): 746-750. |
76 | YU H J, LI J Y, ZHANG Y H, et al. Three-in-one oxygen vacancies: whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction[J]. Angew Chem Int Ed, 2019, 58(12): 3880-3884. |
77 | SHI R, ZHAO Y X, WATERHOUSE G I N, et al. Defect engineering in photocatalytic nitrogen fixation[J]. ACS Catal, 2019, 9(11): 9739-9750. |
78 | BAI S, ZHANG N, GAO C, et al. Defect engineering in photocatalytic materials[J]. Nano Energy, 2018, 53: 296-336. |
79 | RAWOOL S A, YADAV K K, POLSHETTIWAR V. Defective TiO2 for photocatalytic CO2 conversion to fuels and chemicals[J]. Chem Sci, 2021, 12(12): 4267-4299. |
80 | ZHANG Y Z, XIA B Q, RAN J R, et al. Atomic-level reactive sites for semiconductor-based photocatalytic CO2 reduction[J]. Adv Energy Mater, 2020, 10(9): 1903879. |
81 | XIONG L B, LI J L, YANG B, et al. Ti3+ in the surface of titanium dioxide: generation, properties and photocatalytic application[J]. J Nanomater, 2012, 2012: 1-13. |
82 | CHEN X B, LIU L, HUANG F Q. Black titanium dioxide TiO2 nanomaterials[J]. Chem Soc Rev, 2015, 44(7): 1861-1885. |
83 | LIN G X, JU Q J, LIU L J, et al. Caged-cation-induced lattice distortion in bronze TiO2 for cohering nanoparticulate hydrogen evolution electrocatalysts[J]. ACS Nano, 2022, 16(6): 9920-9928. |
84 | KANG Q, CAO J Y, ZHANG Y J, et al. Reduced TiO2 nanotube arrays for photoelectrochemical water splitting[J]. J Mater Chem A, 2013, 1(18): 5766-5774. |
85 | ZHANG W, XUE J B, SHEN Q Q, et al. Black single-crystal TiO2 nanosheet array films with oxygen vacancy on {001} facets for boosting photocatalytic CO2 reduction[J]. J Alloys Compd, 2021, 870: 159400. |
86 | JIA G R, WANG Y, CUI X Q, et al. Wet-chemistry hydrogen doped TiO2 with switchable defects control for photocatalytic hydrogen evolution[J]. Matter, 2022, 5(1): 206-218. |
87 | LI Y H, REN Z T, GU M L, et al. Synergistic effect of interstitial C doping and oxygen vacancies on the photoreactivity of TiO2 nanofibers towards CO2 reduction[J]. Appl Catal B: Environ, 2022, 317: 121773. |
88 | GAO M M, ZHU L L, PEH C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy Environ Sci, 2019, 12(3): 841-864. |
89 | LI X, YU J G, LOW J X, et al. Engineering heterogeneous semiconductors for solar water splitting[J]. J Mater Chem A, 2015, 3(6): 2485-2534. |
90 | LI J T, WU N Q. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review[J]. Catal Sci Technol, 2015, 5(3): 1360-1384. |
91 | GUPTA S M, TRIPATHI M. A review of TiO2 nanoparticles[J]. Chin Sci Bull, 2011, 56(16): 1639-1657. |
92 | MEDHI R, MARQUEZ M D, LEE T R. Visible-light-active doped metal oxide nanoparticles: review of their synthesis, properties, and applications[J]. ACS Appl Nano Mater, 2020, 3(7): 6156-6185. |
93 | CHEN J R, QIU F X, XU W Z, et al. Recent progress in enhancing photocatalytic efficiency of TiO2-based materials[J]. Appl Catal A, 2015, 495: 131-140. |
94 | ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271. |
95 | LEE D K, CHOI J I, LEE G H, et al. Energy states of a core-shell metal oxide photocatalyst enabling visible light absorption and utilization in solar-to-fuel conversion of carbon dioxide[J]. Adv Energy Mater, 2016, 6(14): 1600583. |
96 | NI B X, ZHANG G R, WANG H M, et al. Correlating oxidation state and surface ligand motifs with the selectivity of CO2 photoreduction to C2 products[J]. Angew Chem Int Ed, 2022, 62(6): e202215574. |
97 | WEN J Q, LI X, LIU W, et al. Photocatalysis fundamentals and surface modification of TiO2 nanomaterials[J]. Chin J Catal, 2015, 36(12): 2049-2070. |
98 | PRAKASH J, SUN S H, SWART H C, et al. Noble metals-TiO2 nanocomposites: from fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications[J]. Appl Mater Today, 2018, 11: 82-135. |
99 | ZHU S, CHEN X F, LI Z C, et al. Cooperation between inside and outside of TiO2: lattice Cu+ accelerates carrier migration to the surface of metal copper for photocatalytic CO2 reduction[J]. Appl Catal B: Environ, 2020, 264: 118515. |
100 | XIN X Y, XU T, WANG L, et al. Ti3+-self doped brookite TiO2 single-crystalline nanosheets with high solar absorption and excellent photocatalytic CO2 reduction[J]. Sci Rep, 2016, 6(1): 23684. |
101 | XU M, WU H, TANG Y W, et al. One-step in-situ synthesis of porous Fe3+-doped TiO2 octahedra toward visible-light photocatalytic conversion of CO2 into solar fuel[J]. Microporous Mesoporous Mater, 2020, 309: 110539. |
102 | CHEN L, SONG X L, REN J T, et al. Precisely modifying Co2P/black TiO2 S-scheme heterojunction by in situ formed P and C dopants for enhanced photocatalytic H2 production[J]. Appl Catal B: Environ, 2022, 315: 121546. |
103 | WANG J C, QIAO X, SHI W N, et al. Enhanced photothermal selective conversion of CO2 to CH4 in water vapor over rod-like Cu and N Co-doped TiO2[J]. Chin J Struct Chem, 2022, 41(12): 2212033-2212042. |
104 | WANG H, QI H F, SUN X, et al. High quantum efficiency of hydrogen production from methanol aqueous solution with PtCu-TiO2 photocatalysts[J]. Nat Mater, 2023, 22(5): 619-626. |
105 | ZHU K N, ZHU Q, JIANG M P, et al. Modulating Ti t2g orbital occupancy in a Cu/TiO2 composite for selective photocatalytic CO2 reduction to CO[J]. Angew Chem Int Ed, 2022, 61(34): e202207600. |
106 | BAO X L, ZHANG M H, WANG Z Y, et al. Molten-salt assisted synthesis of Cu clusters modified TiO2 with oxygen vacancies for efficient photocatalytic reduction of CO2 to CO[J]. Chem Eng J, 2022, 445: 136718. |
107 | LIU M, ZHENG L R, BAO X L, et al. Substrate-dependent ALD of Cux on TiO2 and its performance in photocatalytic CO2 reduction[J]. Chem Eng J, 2021, 405: 126654. |
108 | SHEN Y, REN C J, ZHENG L R, et al. Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2[J]. Nat Commun, 2023, 14(1): 1117. |
109 | HUANG H W, ZHAO J W, WENG B, et al. Site-sensitive selective CO2 photoreduction to CO over gold nanoparticles[J]. Angew Chem Int Ed, 2022, 61(28): e202204563. |
110 | RAZIQ F, SUN L Q, WANG Y Y, et al. Synthesis of large surface-area g-C3N4 comodified with MnOx and Au-TiO2 as efficient visible-light photocatalysts for fuel production[J]. Adv Energy Mater, 2018, 8(3): 1701580. |
111 | KAMAL K M, NARAYAN R, CHANDRAN N, et al. Synergistic enhancement of photocatalytic CO2 reduction by plasmonic Au nanoparticles on TiO2 decorated N-graphene heterostructure catalyst for high selectivity methane production[J]. Appl Catal B: Environ, 2022, 307: 121181. |
112 | JIANG D L, ZHOU Y M, ZHANG Q X, et al. Synergistic integration of AuCu Co-catalyst with oxygen vacancies on TiO2 for efficient photocatalytic conversion of CO2 to CH4[J]. ACS Appl Mater Interfaces, 2021, 13(39): 46772-46782. |
113 | YU Y Y, DONG X A, CHEN P, et al. Synergistic effect of Cu single atoms and Au-Cu alloy nanoparticles on TiO2 for efficient CO2 photoreduction[J]. ACS Nano, 2021, 15(9): 14453-14464. |
114 | LI G H, SUN Y Y, ZHANG Q M, et al. Ag quantum dots modified hierarchically porous and defective TiO2 nanoparticles for improved photocatalytic CO2 reduction[J]. Chem Eng J, 2021, 410: 128397. |
115 | XIONG Z, LEI Z, CHEN X X, et al. CO2 photocatalytic reduction over Pt deposited TiO2 nanocrystals with coexposed {101} and {001} facets: effect of deposition method and Pt precursors[J]. Catal Commun, 2017, 96: 1-5. |
116 | LIU Y A, MIAO C L, YANG P F, et al. Synergetic promotional effect of oxygen vacancy-rich ultrathin TiO2 and photochemical induced highly dispersed Pt for photoreduction of CO2 with H2O[J]. Appl Catal B: Environ, 2019, 244: 919-930. |
117 | SORCAR S, HWANG Y, GRIMES C A, et al. Highly enhanced and stable activity of defect-induced titania nanoparticles for solar light-driven CO2 reduction into CH4[J]. Mater Today, 2017, 20(9): 507-515. |
118 | ZHU Y Z, XU Z X, LANG Q Q, et al. Grain boundary engineered metal nanowire cocatalysts for enhanced photocatalytic reduction of carbon dioxide[J]. Appl Catal B: Environ, 2017, 206: 282-292. |
119 | MA Y J, YI X X, WANG S L, et al. Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2[J]. Nat Commun, 2022, 13(1): 1400. |
120 | ZHAN Z, WANG H, HUANG Q, et al. Grafting hypercrosslinked polymers on TiO2 surface for anchoring ultrafine Pd nanoparticles: dramatically enhanced efficiency and selectivity toward photocatalytic reduction of CO2 to CH4[J]. Small, 2021, 18(1): 2105083. |
121 | ROSS M B, DE LUNA P, LI Y, et al. Designing materials for electrochemical carbon dioxide recycling[J]. Nat Catal, 2019, 2(8): 648-658. |
122 | KUAI L, CHEN Z, LIU S J, et al. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation[J]. Nat Commun, 2020, 11(1): 48. |
123 | AO X, ZHANG W, LI Z S, et al. Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters[J]. ACS Nano, 2019, 13(10): 11853-11862. |
124 | LEE B H, GONG E, KIM M, et al. Electronic interaction between transition metal single-atoms and anatase TiO2 boosts CO2 photoreduction with H2O[J]. Energy Environ Sci, 2022, 15(2): 601-609. |
125 | QI K Z, CHENG B, YU J G, et al. A review on TiO2-based Z-scheme photocatalysts[J]. Chin J Catal, 2017, 38(12): 1936-1955. |
126 | LOW J X, JIANG C J, CHENG B, et al. A review of direct Z-scheme photocatalysts[J]. Small Methods, 2017, 1(5): 1700080. |
127 | ZHANG M, LU M, LANG Z L, et al. Semiconductor/covalent-organic-framework Z-scheme heterojunctions for artificial photosynthesis[J]. Angew Chem Int Ed, 2020, 59(16): 6500-6506. |
128 | BARD A J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors[J]. J Photochem, 1979, 10(1): 59-75. |
129 | MARSCHALL R. Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity[J]. Adv Funct Mater, 2014, 24(17): 2421-2440. |
130 | JIA C C, ZHANG X, MATRAS-POSTOLEK K, et al. Z-scheme reduced graphene oxide/TiO2-Bronze/W18O49 ternary heterostructure towards efficient full solar-spectrum photocatalysis[J]. Carbon, 2018, 139: 415-426. |
131 | LOW J X, DAI B Z, TONG T, et al. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst[J]. Adv Mater, 2019, 31(6): e1802981. |
132 | BIAN J, ZHANG Z Q, FENG J N, et al. Energy platform for directed charge transfer in the cascade Z-scheme heterojunction: CO2 photoreduction without a cocatalyst[J]. Angew Chem Int Ed, 2021, 60(38): 20906-20914. |
133 | LI Q, YANG S C, LIU R H, et al. Synergetic effect of the interface electric field and the plasmon electromagnetic field in Au-Ag alloy mediated Z-type heterostructure for photocatalytic hydrogen production and CO2 reduction[J]. Appl Catal B: Environ, 2023, 331: 122700. |
134 | ZHANG L Y, ZHANG J J, YU H G, et al. Emerging S-scheme photocatalyst[J]. Adv Mater, 2022, 34(11): e2107668. |
135 | WANG L X, ZHU B C, ZHANG J J, et al. S-scheme heterojunction photocatalysts for CO2 reduction[J]. Matter, 2022, 5(12): 4187-4211. |
136 | FU J W, XU Q L, LOW J X, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Appl Catal B: Environ, 2019, 243: 556-565. |
137 | FU J, Wei, YU J G, JIANG C J, et al. g-C3N4-based heterostructured photocatalysts[J]. Adv Energy Mater, 2018, 8(3): 1701503. |
138 | LI J M, WU C C, LI J, et al. 1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution[J]. Chin J Catal, 2022, 43(2): 339-349. |
139 | WANG L B, CHENG B, ZHANG L Y, et al. In situ irradiated XPS investigation on S‐scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction [J]. Small, 2021, 17(41): e2103447. |
140 | WANG Y L, HE W J, XIONG J, et al. MIL-68(In)-derived In2O3@TiO2 S-scheme heterojunction with hierarchical hollow structure for selective photoconversion of CO2 to hydrocarbon fuels[J]. Fuel, 2023, 331: 125719. |
141 | XU F Y, MENG K, CHENG B, et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction [J]. Nat Commun, 2020, 11(1): 4613. |
142 | LI J, QIN Q H, SHAH A, et al. Oil droplet self-transportation on oleophobic surfaces[J]. Sci Adv, 2016, 2(6): e1600148. |
143 | LI H Z, LI A, ZHAO Z P, et al. Heterogeneous wettability surfaces: principle, construction, and applications[J]. Small Struct, 2020, 1(2): 2000028. |
144 | YOUNG T. III. An essay on the cohesion of fluids[J]. Philos Trans R Soc London, 1997, 95(95): 65-87. |
145 | LIU M J, WANG S T, JIANG L. Nature-inspired superwettability systems[J]. Nat Rev Mater, 2017, 2(7): 17036. |
146 | SU B, TIAN Y, JIANG L. Bioinspired interfaces with superwettability: from materials to chemistry[J]. J Am Chem Soc, 2016, 138(6): 1727-1748. |
147 | YU Y Y, CUI W, SONG L, et al. Design of organic-free superhydrophobic TiO2 with ultraviolet stability or ultraviolet-induced switchable wettability[J]. ACS Appl Mater Interfaces, 2022, 14(7): 9864-9872. |
148 | WAKERLEY D, LAMAISON S, OZANAM F, et al. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface[J]. Nat Mater, 2019, 18(11): 1222-1227. |
149 | ZHOU H, SHENG X, XIAO J, et al. Increasing the efficiency of photocatalytic reactions via surface microenvironment engineering[J]. J Am Chem Soc, 2020, 142(6): 2738-2743. |
150 | DONG C Y, XING M Y, ZHANG J L. Economic hydrophobicity triggering of CO2 photoreduction for selective CH4 generation on noble-metal-free TiO2-SiO2[J]. J Phys Chem Lett, 2016, 7(15): 2962-2966. |
151 | KANG S, KHAN H, LEE C, et al. Investigation of hydrophobic MoSe2 grown at edge sites on TiO2 nanofibers for photocatalytic CO2 reduction[J]. Chem Eng J, 2021, 420: 130496. |
152 | ZHAO D W, DANG C Z, XUAN Y M, et al. Hydrophobic Ni@N-doped TiO2 nanosheet arrays-carbon paper photocatalyst for CO2 photoreduction at tri-phase interfaces[J]. Adv Sustainable Syst, 2023, 7(4): 2200450. |
[1] | Tao ZHANG, He ZHANG, Ya-Xin DU, Si-Hui ZHAN. Cobalt-Doped Mn2O3 for Activation of Peroxymonosulfate for Degradation of Pharmaceutical Wastewater [J]. Chinese Journal of Applied Chemistry, 2024, 41(2): 268-278. |
[2] | Yu-Xuan LI, Yu-Hao ZHAO, Yu-Ze DAI, Min JIANG, Ying ZHANG, Guang-Yuan ZHOU. Preparation and Characterization of Poly(ethylene 2,5-furandicarboxylate)/TiO2 Nanoparticles/ Diatomaceous Earth Composites [J]. Chinese Journal of Applied Chemistry, 2023, 40(9): 1277-1287. |
[3] | Xue-Bo LEI, Hui-Jing LIU, He-Yu DING, Guo-Dong SHEN, Run-Jun SUN. Research Progress on Photocatalysts for Degradation of Organic Pollutants in Printing and Dyeing Wastewater [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 681-696. |
[4] | Guo-Qing CAI, Jing-Ru DONG, Jun-Ming MO. Green Synthesis and Antibacterial Activity of N‑Benzyl Sulfoximines [J]. Chinese Journal of Applied Chemistry, 2023, 40(12): 1693-1699. |
[5] | Feng WEI, Hai-Dong XING, Zi-Yuan XIU, De-Feng XING, Xiao-Jun HAN. Fabrication of BiOX-Based Photocatalysts and Their Applications in Energy Conversion [J]. Chinese Journal of Applied Chemistry, 2023, 40(11): 1518-1530. |
[6] | Chao ZHANG. Research Prospect of Single Atom Catalysts Towards Electrocatalytic Reduction of Carbon Dioxide [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 871-887. |
[7] | Hui-Bing TAO, Zhen TIAN, Yong XIE, Yu SUN, Li WANG, Zhuo KANG, Yue ZHANG. Progress of In situ Raman Study on the Dynamic Structure Performance Correlation of Water Splitting Catalysts [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 528-539. |
[8] | Lin-Jie SHANG, Jiang LIU, Ya-Qian LAN. Covalent Organic Framework Materials for Photo/ Electrocatalytic Carbon Dioxide Reduction [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 559-584. |
[9] | Jia-He WANG, Da-Yong LIU, Wei LIU, Lin WANG, Biao DONG. Research Progress on Photocatalytic Antibacterial Application of TiO2 Nano Materials [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 629-646. |
[10] | Hui LU, Jiang LI, Li-Hua WANG, Ying ZHU, Jing CHEN. Researsh Progress of Photocatalytic Applications of Atomically Precise Coinage Metal Nanoclusters [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1652-1664. |
[11] | Xiang-Zhi YE, Yun-Shui DENG, Yuan LIU, Yong-Liu ZHOU, Jian-Xiong HE, Chun-Rong XIONG. Glass Sphere Supported Amorphous Organotitanium Polymer to Improve the Turnover Frequency in Photocatalytic Reduction of CO2 [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1554-1563. |
[12] | Ying-Zi LI, Ting LIU, Si-Qi WU, Xuan FANG, Jing GAO, Shi TANG. Metallaphotoredox⁃Catalyzed O⁃Arylation of Serine [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1610-1616. |
[13] | GAO Chun-Lei, ZHENG Yong-Mei . Control of Droplet Dynamic Behavior at Bioinspired Multi⁃micro/nano Gradient Interface [J]. Chinese Journal of Applied Chemistry, 2022, 39(1): 110-130. |
[14] | ZHANG Jin-Hong, SHI Kui, XU Peng, LI Qian, XUE Long-Jian. Regulation of Friction Force of a Water Droplet on Bioinspired Surface [J]. Chinese Journal of Applied Chemistry, 2022, 39(1): 188-195. |
[15] | YANG Yu-Ping, XU Shao-Hong, MA Guo-Yang, JIAO Li-Ming, SUN Li-Ping, XIA Ran. Synthesis of 5-Deuterated Ribavirin Derivative [J]. Chinese Journal of Applied Chemistry, 2021, 38(8): 911-916. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||