
Chinese Journal of Applied Chemistry ›› 2024, Vol. 41 ›› Issue (1): 147-155.DOI: 10.19894/j.issn.1000-0518.230234
• Full Papers • Previous Articles Next Articles
Ling-Bo LIU1, Shuang LI1, Kang-Bing WU1,2()
Received:
2023-08-07
Accepted:
2023-10-18
Published:
2024-01-01
Online:
2024-01-30
Contact:
Kang-Bing WU
About author:
kbwu@hust.edu.cnSupported by:
CLC Number:
Ling-Bo LIU, Shuang LI, Kang-Bing WU. Laser-Induced Graphene-Based Integrated Arrays for the Determination of Trimetazidine[J]. Chinese Journal of Applied Chemistry, 2024, 41(1): 147-155.
Fig.1 (A) Design image of the integrated arrays; (B) Process of laser engraving; (C) Integrated arrays after laser engraving; (D) Resistance measurement of integrated arrays; (E) Integrated arrays after encapsulation and coating with Ag/AgCl slurry; (F) Connection between the integrated array and the electrochemical workstation
Fig.5 CV curves of 5 mmol/L K3[Fe(CN)6] on (A) LIG-50 array, (B) LIG-60 array, (C) LIG-70 array and (D) LIG-80 array at different scan rates; (E) The plots of Ipa-v1/2 on different arrays; (F) Resistance changes of different arrays with laser power (error bars represent the standard deviation of three measurements)
Fig.6 (A) Nyquist plots of 0.5 mmol/L TMZ on different arrays; Bias voltage: 0.55 V, Frequency range: 0.03~10000 Hz; Inset: the Randles equivalent circuit (Rs, CPE, Rct and Zw represent the solution resistance, constant phase angle element, charge transfer resistance and Warburg impedance). (B) LSV curves of 10 μmol/L TMZ on different arrays
Fig.7 (A) CV curves of 20 μmol/L TMZ on LIG-70 array at different scan rates, inset: Ipa-v plot; (B) Plot of Epa-ln v; (C) CV curves of 20 μmol/L TMZ in phosphate buffer with different pH values on LIG-70 array at a scan rate of 100 mV/s; (D) Plot of Epa-pH
Fig.8 Effects of (A) pH values, (B) initial potential and (C) accumulation time on the oxidation peak current of 5 μmol/L TMZ; (D) LSV curves of TMZ with different concentrations on LIG-70 array; (E) The calibration curve of TMZ; (F) Response siganls of 5 μmol/L TMZ in the absence and in the presence of interfertants. The error bars represent the standard deviations of three measurements
Sample | Added/(μmol·L-1) | Total found/(μmol·L-1) (mean±SD) | RSD/% | Recovery/% |
---|---|---|---|---|
1 | 1.00 | 1.01±0.04 | 3.95 | 101.0 |
5.00 | 5.16±0.06 | 1.20 | 103.2 | |
20.00 | 20.25±0.74 | 3.66 | 101.3 | |
2 | 1.00 | 0.96±0.03 | 2.89 | 96.0 |
5.00 | 4.81±0.04 | 0.79 | 96.3 | |
20.00 | 20.63±0.42 | 2.04 | 103.2 | |
3 | 1.00 | 0.96±0.02 | 2.17 | 96.0 |
5.00 | 4.85±0.06 | 1.28 | 97.1 | |
20.00 | 21.24±0.45 | 2.12 | 106.2 |
Table 1 Determination of TMZ in urine samples from volunteers (n=3)
Sample | Added/(μmol·L-1) | Total found/(μmol·L-1) (mean±SD) | RSD/% | Recovery/% |
---|---|---|---|---|
1 | 1.00 | 1.01±0.04 | 3.95 | 101.0 |
5.00 | 5.16±0.06 | 1.20 | 103.2 | |
20.00 | 20.25±0.74 | 3.66 | 101.3 | |
2 | 1.00 | 0.96±0.03 | 2.89 | 96.0 |
5.00 | 4.81±0.04 | 0.79 | 96.3 | |
20.00 | 20.63±0.42 | 2.04 | 103.2 | |
3 | 1.00 | 0.96±0.02 | 2.17 | 96.0 |
5.00 | 4.85±0.06 | 1.28 | 97.1 | |
20.00 | 21.24±0.45 | 2.12 | 106.2 |
1 | 王艳芝, 付存玉. 心通颗粒联合盐酸曲美他嗪片治疗冠心病心绞痛的临床效果[J]. 临床合理用药, 2023, 16(11): 4-7. |
WANG Y Z, FU C Y. Clinical effect of Xintong granules combined with trimetazidine hydrochloride tablets in the treatment of coronary angina pectoris[J]. Chin J Clin Rational Drug Use, 2023, 16(11): 4-7. | |
2 | 于长禹, 屈春红. 曲美他嗪在缺血性心肌病心力衰竭治疗中的作用[J]. 中国实用医药, 2023, 18(6): 91-93. |
YU C Y, QU C H. The role of trimetazidine in the treatment of heart failure in ischemic cardiomyopathy[J]. China Prac Med, 2023, 18(6): 91-93. | |
3 | OKANO M, MIYAMOTO A, OTA M, et al. Doping control analysis of trimetazidine in dried blood spot[J]. Drug Test Anal, 2022: 1-11. |
4 | 王雪莹. 兴奋剂与竞技体育,永不终止的猫鼠游戏[N]. 北京科技报, 2022-02-21(014). |
WANG X Y. Doping and athletics, the never-ending cat-and-mouse game[N]. Beijing Science and Technology News, 2022-02-21(014). | |
5 | LI C, HAN D, WU Z, et al. Polydopamine-based molecularly imprinted electrochemical sensor for the highly selective determination of ecstasy components[J]. Analyst, 2022, 147(14): 3291-3297. |
6 | WU Z X, GUO F, HUANG L, et al. Electrochemical nonenzymatic sensor based on cetyltrimethylammonium bromide and chitosan functionalized carbon nanotube modified glassy carbon electrode for the determination of hydroxymethanesulfinate in the presence of sulfite in foods[J]. Food Chem, 2018, 259: 213-218. |
7 | GHONEIM M M, KHASHABA P Y, BELTAGI A M. Determination of trimetazidine HCl by adsorptive stripping square-wave voltammetry at a glassy carbon electrode[J]. J Pharm Biomed Anal, 2002, 27(1): 235-241. |
8 | LIN J, PENG Z W, LIU Y Y, et al. Laser-induced porous graphene films from commercial polymers[J]. Nat Commun, 2014, 5: 5714. |
9 | ZHU J, HUANG X, SONG W. Physical and chemical sensors on the basis of laser-induced graphene: mechanisms, applications, and perspectives[J]. ACS Nano, 2021, 15(12): 18708-18741. |
10 | VIVALDI F M, DALLINGER A, BONINI A, et al. Three-dimensional (3D) laser-induced graphene: structure, properties, and application to chemical sensing[J]. ACS Appl Mater Interfaces, 2021, 13(26): 30245-30260. |
11 | MA W, ZHU J, WANG Z, et al. Recent advances in preparation and application of laser-induced graphene in energy storage devices[J]. Mater Today Energy, 2020, 18: 100569. |
12 | YE R, HAN X, KOSYNKIN D V, et al. Laser-induced conversion of teflon into fluorinated nanodiamonds or fluorinated graphene[J]. ACS Nano, 2018, 12(2): 1083-1088. |
13 | GE L, HONG Q, LI H, et al. Direct-laser-writing of metal sulfide-graphene nanocomposite photoelectrode toward sensitive photoelectrochemical sensing[J]. Adv Funct Mater, 2019, 29: 1904000. |
14 | TRUSOVAS R, RATAUTAS K, RACIUKAITIS G, et al. Graphene layer formation in pinewood by nanosecond and picosecond laser irradiation[J]. Appl Surf Sci, 2019, 471: 154-161. |
15 | ZHANG W, LEI Y, MING F, et al. Lignin laser lithography: a direct-write method for fabricating 3D graphene electrodes for microsupercapacitors[J]. Adv Energy Mater, 2018, 8: 1801840. |
16 | CHYAN Y, YE R, LI Y, et al. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food[J]. ACS Nano, 2018, 12(3): 2176-2183. |
17 | WEI P, SHEN J, WU K, et al. Tuning electrochemical behaviors of N-methyl-2-pyrrolidone liquid exfoliated graphene nanosheets by centrifugal speed-based grading[J]. Carbon, 2018, 129: 183-190. |
18 | XIE L, WANG H, JIN C, et al. Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, raman spectroscopy, and electrical properties[J]. J Am Chem Soc, 2011, 133(27): 10394-10397. |
19 | FERRARI A C, RODIL S E, ROBERTSON J. Interpretation of infrared and Raman spectra of amorphous carbon nitrides[J]. Phys Rev B, 2003, 67(15): 155306. |
20 | SAMOUCO A, MARQUES A C, PIMENTEL A, et al. Laser-induced electrodes towards low-cost flexible UV ZnO sensors[J]. Flexible Printed Electron, 2018, 3(4): 044002. |
21 | RANDLES J E B. A cathode ray polarograph[J]. Trans Faraday Soc, 1948, 44: 322-327. |
22 | EL GUERRAF A, BAKIRHAN N K, BEN JADI S, et al. PEDOT for sensitive electrochemical detection of trimetazidine hydrochloride in biological fluids: synthesis, characterization and mechanism insights[J]. J Electrochem Soc, 2020, 167(16): 167525. |
23 | XING Y, YAN X, ZHU Y, et al. Shape-optimized nanosized MOF-74T and CdS composite by transformation strategy for ultrasensitive detection of metabolic modulators trimetazidine[J]. Electrochim Acta, 2023, 461: 142652. |
[1] | Chun-Ying YAO, Xiao-Yan ZHU, Yan-Ling LIU. A 3D Glucose Electrochemical Sensor Integrated with Collagen Hydrogel for Real-Time Monitoring of Cell Metabolism [J]. Chinese Journal of Applied Chemistry, 2024, 41(1): 156-163. |
[2] | Qing-Fang NIU, Xin AI, Yi-Xuan WANG, Fang-Jiu HE, Bi LUO, Wen-Ting LIANG, Chuan DONG. Synthesis of Three‑Dimensional Reduced Graphene Oxide/β‑Cyclodextrin Complex and Its Electrochemical Detection of Levofloxacin in Water [J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1129-1137. |
[3] | AN Lingling1, LU Maofeng1, DENG Lingling1, DU Jiangyan1,2,3*. Electrochemical Activities of 8-Hydroxydeoxyguanosine in Chitosan/Graphene Modified Glassy Carbon Electrode and Detection of DNA Oxidative Damage [J]. Chinese Journal of Applied Chemistry, 2014, 31(02): 200-205. |
[4] | ZHAO Lu2, DU Jiangyan1,2*. Fabrication of Chloramphenicol Molecular Imprinted Composite Film and Its Electrochemistry [J]. Chinese Journal of Applied Chemistry, 2012, 29(10): 1212-1217. |
[5] | ZHAO Yongxin, LI Li, WANG Ku, LU Tianhong, YANG Xiaodi*, LI Huihui *. Application of Graphene-chitosan Modified Electrode for the Detection of Pentachlorophenol in Environmental Water [J]. Chinese Journal of Applied Chemistry, 2012, 29(10): 1206-1211. |
[6] | ZHANG Li-Jun, LU Tian-Hong, LI Shi-Yin, DU Jiang-Yan*. Fabrication and Application of CAP-MIP-OAP Film Electrode for Chloramphenical Detection [J]. Chinese Journal of Applied Chemistry, 2011, 28(03): 338-342. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 180
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 261
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||