Chinese Journal of Applied Chemistry ›› 2023, Vol. 40 ›› Issue (2): 236-244.DOI: 10.19894/j.issn.1000-0518.220230
• Full Papers • Previous Articles Next Articles
Li-Yan CHEN1, Zi-Ming ZHAO1, Jin-Qi TAO1, Yu-Zhen ZHANG1(), Gang CHENG2, Yun-Jun SHEN1()
Received:
2022-07-02
Accepted:
2022-11-07
Published:
2023-02-01
Online:
2023-02-27
Contact:
Yu-Zhen ZHANG,Yun-Jun SHEN
About author:
yunjunshen@gxmzu.edu.cnSupported by:
CLC Number:
Li-Yan CHEN, Zi-Ming ZHAO, Jin-Qi TAO, Yu-Zhen ZHANG, Gang CHENG, Yun-Jun SHEN. Synthesis of Mono- and Binuclear Disulfur-Chelated Organoplatinum(Ⅱ) Complexes and Its OLEDs Application[J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 236-244.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220230
Compound | State a | λ/nm | Quantum yield (φ)/% b | Life time (τ)/μs | Radiative rate constant/ 104 ·s-1 c | Non radiative rate constant/ 105·s-1 c |
---|---|---|---|---|---|---|
Pt(Stpip)LH | PMMA | 524 | 26.9 | 1.29 | 20.83 | 5.60 |
526 | 38.7 | 0.99 | 39.08 | 6.19 | ||
Pt2(Stpip)2L | PMMA | 593, 559sh d | 7.6 | 0.78 | 9.78 | 11.8 |
560 | 22.2 | 2.80 | 7.93 | 2.79 |
Table 1 Photophysical properties of Pt2(Stpip)2L and Pt(Stpip)LH
Compound | State a | λ/nm | Quantum yield (φ)/% b | Life time (τ)/μs | Radiative rate constant/ 104 ·s-1 c | Non radiative rate constant/ 105·s-1 c |
---|---|---|---|---|---|---|
Pt(Stpip)LH | PMMA | 524 | 26.9 | 1.29 | 20.83 | 5.60 |
526 | 38.7 | 0.99 | 39.08 | 6.19 | ||
Pt2(Stpip)2L | PMMA | 593, 559sh d | 7.6 | 0.78 | 9.78 | 11.8 |
560 | 22.2 | 2.80 | 7.93 | 2.79 |
Mass percent/% | CIE max/(cd·m-2) | ηc /(cd·A-1) | ηp /(lm·W-1) | EQE/% | CIE [(x, y)] a | |||
---|---|---|---|---|---|---|---|---|
Max | at 1000 cd/m2 | Max | at 1000 cd/m2 | Max | at 1000 cd/m2 | |||
2 | 6 650 | 19.85 | 17.40 | 13.00 | 10.93 | 6.33 | 5.55 | 0.46, 0.51 |
4 | 7 600 | 20.69 | 18.55 | 14.03 | 12.06 | 6.48 | 5.81 | 0.46, 0.51 |
6 | 8 450 | 24.50 | 23.96 | 14.81 | 13.63 | 7.75 | 7.58 | 0.47, 0.51 |
8 | 8 700 | 25.50 | 21.51 | 15.41 | 11.65 | 8.19 | 6.91 | 0.48, 0.50 |
Table 2 Key performances of Pt2(Stpip)2L-based OLEDs
Mass percent/% | CIE max/(cd·m-2) | ηc /(cd·A-1) | ηp /(lm·W-1) | EQE/% | CIE [(x, y)] a | |||
---|---|---|---|---|---|---|---|---|
Max | at 1000 cd/m2 | Max | at 1000 cd/m2 | Max | at 1000 cd/m2 | |||
2 | 6 650 | 19.85 | 17.40 | 13.00 | 10.93 | 6.33 | 5.55 | 0.46, 0.51 |
4 | 7 600 | 20.69 | 18.55 | 14.03 | 12.06 | 6.48 | 5.81 | 0.46, 0.51 |
6 | 8 450 | 24.50 | 23.96 | 14.81 | 13.63 | 7.75 | 7.58 | 0.47, 0.51 |
8 | 8 700 | 25.50 | 21.51 | 15.41 | 11.65 | 8.19 | 6.91 | 0.48, 0.50 |
Fig.8 Device performance of Pt2(Stpip)2L with different doping concentrations (A) Electroluminescence spectra of the devices; (B) Luminance- external quantum efficiency (L-EQE) curves of the devices; (C) Luminance-voltage (L-V) curves of the devices; (D) Current density-voltage(J-V) curves of the devices
1 | YERSIN H. Highly efficient OLEDs with phosphorescent materials[M]. Weinheim: Wiley-VCH, 2008. |
2 | YERSIN H, RAUSCH A F, CZERWIENIEC R, et al. The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs[J]. Coord Chem Rev, 2011, 255(21/22): 2622-2652. |
3 | WANG X, WANG S. Phosphorescent Pt(Ⅱ) emitters for OLEDs: from triarylboron-functionalized bidentate complexes to compounds with macrocyclic chelating ligands[J]. Chem Rec, 2019, 19(8): 1693-1709. |
4 | FLEETHAM T, LI G, LI J. Phosphorescent Pt(Ⅱ) and Pd(Ⅱ) complexes for efficient, high-color-quality, and stable OLEDs[J]. Adv Mater, 2017, 29(5): 1601861. |
5 | YANG H, LI H, YUE L, et al. Aggregation-induced phosphorescence emission (AIPE) behaviors in PtⅡ(C^N) (N-donor ligand)Cl-type complexes through restrained D2d deformation of the coordinating skeleton and their optoelectronic properties[J]. J Mater Chem C, 2021, 9(7): 2334-2349. |
6 | SUN Y, CHEN C, LIU B, et al. Efficient dinuclear Pt(Ⅱ) complexes based on the triphenylphosphine oxide scaffold for high performance solution-processed OLEDs[J]. J Mater Chem C, 2021, 9(16): 5373-5378. |
7 | LU G, WU Z G, WU R, et al. Semitransparent circularly polarized phosphorescent organic light-emitting diodes with external quantum efficiency over 30% and dissymmetry factor close to 10-2[J]. Adv Funct Mater, 2021, 31(36): 2102898. |
8 | YANG R, ZHOU Y, BIAN H, et al. Enhancing quantum efficiency in Pt-based emitters using a pendant closo-monocarborane cluster to enforce charge neutrality[J]. Chem Eng J, 2022, 447: 137432. |
9 | DONG R, LI J, LIU D, et al. Self-host thermally activated delayed fluorescence material with aggregation-induced emission character: multi-functional applications in oleds[J]. Adv Optical Mater, 2021, 9(24): 2100970. |
10 | ZHANG Y, LI Q, CAI M, et al. An 850 nm pure near-infrared emitting iridium complex for solution-processed organic light-emitting diodes[J]. J Mater Chem C, 2020, 8(25): 8484-8492. |
11 | WEI Y C, WANG S F, HU Y, et al. Overcoming the energy gap law in near-infrared OLEDs by exciton-vibration decoupling[J]. Nat Photonics, 2020, 14(9): 570-577. |
12 | TANG M C, LEE C H, NG M, et al. Highly emissive fused heterocyclic alkynylgold(Ⅲ) complexes for multiple color emission spanning from green to red for solution-processable organic light-emitting devices[J]. Angew Chem Int Ed, 2018, 57(19): 5463-5466. |
13 | LI K, TONG G S M, YUAN J, et al. Excitation-wavelength-dependent and auxiliary-ligand-tuned intersystem-crossing efficiency in cyclometalated platinum(Ⅱ) complexes: spectroscopic and theoretical studies[J]. Inorg Chem, 2020, 59(20): 14654-14665. |
14 | FENG J, YANG L, ROMANOV A S, et al. Environmental control of triplet emission in donor-bridge-acceptor organometallics[J]. Adv Funct Mater, 2020, 30(9): 1908715. |
15 | CHOW P K, CHENG G, TONG G S, et al. Luminescent pincer platinum(Ⅱ) complexes with emission quantum yields up to almost unity: photophysics, photoreductive C—C bond formation, and materials applications[J]. Angew Chem Int Ed, 2015, 54(7): 2084-2089. |
16 | CULHAM S, LANOE P H, WHITTLE V L, et al. Highly luminescent dinuclear platinum(Ⅱ) complexes incorporating bis-cyclometallating pyrazine-based ligands: a versatile approach to efficient red phosphors[J]. Inorg Chem, 2013, 52(19): 10992-11003. |
17 | SHAFIKOV M Z, DANIELS R, PANDER P, et al. Dinuclear design of a Pt(Ⅱ) complex affording highly efficient red emission: photophysical properties and application in solution-processible oleds[J]. ACS Appl Mater Interfaces, 2019, 11(8): 8182-8193. |
18 | YANG X, JIAO B, DANG J S, et al. Achieving high-performance solution-processed orange oleds with the phosphorescent cyclometalated trinuclear Pt(Ⅱ) complex[J]. ACS Appl Mater Interfaces, 2018, 10(12): 10227-10235. |
19 | PUTTOCK E V, WALDEN M T, WILLIAMS J A G. The luminescence properties of multinuclear platinum complexes[J]. Coord Chem Rev, 2018, 367: 127-162. |
20 | SOELLNER J, PINTER P, STIPURIN S, et al. Platinum(Ⅱ) complexes with bis(pyrazolyl)borate ligands: increased molecular rigidity for bidentate ligand systems[J]. Angew Chem Int Ed Engl, 2021, 60(7): 3556-3560. |
21 | SU N, ZHENG Y X. Four-membered red iridium(Ⅲ) complexes with Ir-S-P-S structures: rapid room-temperature synthesis and application in OLEDs[J]. Dalton Trans, 2019, 48(22): 7583-7588. |
22 | LU G Z, SU N, YANG H Q, et al. Rapid room temperature synthesis of red iridium(Ⅲ) complexes containing a four-membered Ir-S-C-S chelating ring for highly efficient OLEDs with EQE over 30[J]. Chem Sci, 2019, 10(12): 3535-3542. |
23 | SUO X, NIE C, LIU W, et al. Red phosphorescent binuclear Pt(Ⅱ) complexes incorporating bis(diphenylphorothioyl)amide ligands: synthesis, photophysical properties and application in solution processable OLEDs[J]. J Mater Chem C, 2021, 9(30): 9505-9514. |
24 | ZHANG K, LIU Y, HAO Z, et al. A feasible approach to obtain near-infrared (NIR) emission from binuclear platinum(Ⅱ) complexes containing centrosymmetric isoquinoline ligand in PLEDs[J]. Org Electron, 2020, 87: 105902. |
[1] | He LI, Gong LI, Xue GONG, Ming-Bo RUAN, Ce HAN, Ping SONG, Wei-Lin XU. Research on Performance Decay Mechanism of Pt/C Catalyst in Long‑Term ORR Test [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1564-1571. |
[2] | LI Gong, JIN Long-Yi, YAO Peng-Fei, LIU Cong, XU Wei-Lin. Controllability Design of High Performance Oxygen Reduction Catalysts Supported by Platinum Nanoparticles Loaded on Mesoporous Carbon [J]. Chinese Journal of Applied Chemistry, 2021, 38(12): 1639-1646. |
[3] | LIU Weiqiang,CUI Rongzhen,WU Ruixia,LI Yunhui,YANG Xiuyun,ZHOU Liang. Recent Progress on Blue Delayed Fluorescent Materials and Devices [J]. Chinese Journal of Applied Chemistry, 2019, 36(1): 1-9. |
[4] | SHAO Shiyang, DING Junqiao, WANG Lixiang. Recent Advances on Thermally Activated Delayed Fluorescence Polymers [J]. Chinese Journal of Applied Chemistry, 2018, 35(9): 993-1004. |
[5] | HUANG Huodi,ZHANG Xiaofeng,ZHANG Yi,LE Lijuan,Lin Shen. Synthesis of Pt/{Reduced Graphene Oxide/Polyoxometalates}n Composite Films and Their Electrocatalytic Performance [J]. Chinese Journal of Applied Chemistry, 2017, 34(10): 1209-1220. |
[6] | HU Zhengyong, LI Shanjia, DONG Xinrong. Synthesis and Photoelectric Properties of a Cyclometalated Iridium-Platinum Binuclear Complex [J]. Chinese Journal of Applied Chemistry, 2016, 33(12): 1428-1434. |
[7] | DAI Yanfeng,ZHANG Zhiqiang,LIU Yipeng,MA Dongge. High Efficiency Fluorescent/Phosphorescent Hybrid White Organic Light-Emitting Diodes Without Spacer Structure [J]. Chinese Journal of Applied Chemistry, 2015, 32(10): 1139-1145. |
[8] | GU Mu, HE Daiping, JIANG Ping, YIN Xingchun, CHEN Hu. Selective Hydrogenation of p-Chloronitrobenzene Catalyzed by Activated Carbon Supported Fe-Pt Bimetallic Catalyst [J]. Chinese Journal of Applied Chemistry, 2015, 32(10): 1164-1169. |
[9] | GUO Xianhou1,2, WNAG Xueliang1, YU Zhangyu1,3*. Determination of Epinephrine by Graphene/Platinum Nanoparticle Hybrid Membrane Modified Electrode [J]. Chinese Journal of Applied Chemistry, 2014, 31(12): 1465-1471. |
[10] | LV Jianhong1,2, MA Zhihua1, DING Junqiao1*, WANG Lixiang1*. Synthesis and Characterization of a Green-Emitting Iridium Complex Based on Fluorinated Benzoimidazole Ligand [J]. Chinese Journal of Applied Chemistry, 2014, 31(10): 1177-1184. |
[11] | BI Lixiao, LIU Zenghua, KONG Desheng, YU Zhangyu*, FENG Yuanyuan*. Carbon-supported Pt-Ag Bimetallic Catalysts for Methanol Electro-Oxidation Reaction [J]. Chinese Journal of Applied Chemistry, 2013, 30(01): 107-113. |
[12] | SHI Changsheng, CHEN Jiangshan*, MA Dongge*. Ultrathin Al/Li2CO3 Modified Indium Tin Oxide Cathode for Blue Phosphorescent Inverted Bottom-emission Organic Light-emitting Diodes [J]. Chinese Journal of Applied Chemistry, 2012, 29(12): 1412-1416. |
[13] | QIN Gaofei1,2, ZHOU Ying1, LUO Qin3, JIANG Wenwei1*, WANG Jide2 ,YANG Qin3. Process and Application of Recovering Platinum from Used Liquid-phase Catalysts by Solvent Extraction with Thiourea [J]. Chinese Journal of Applied Chemistry, 2011, 28(11): 1337-1339. |
[14] | LUO Kaijun1*, JIANG Shiping1, ZHANG Lifang1, ZHU Weiguo2, WANG Xin1. Saturated red polymer electrophosphorescent devices with meso-tetrakis (4-n-decanoyl-phenyl) porphyrin platinum (Ⅱ) complex as emitters [J]. Chinese Journal of Applied Chemistry, 2011, 28(10): 1155-1160. |
[15] | GUAN Songlei1,3, HU Xiuli1, LIU Zhongying1*, SONG Fengrui2, LIU Zhiqiang2. Anti-tumor Effect of Curcumin Combining with Cis-platin on Human Ovrian Cancer Cell Line COC1 in vitro [J]. Chinese Journal of Applied Chemistry, 2011, 28(09): 1022-1027. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||