[1] MIELE N A, CABISIDAN E K, BLAIOTTA G, et al.Rheological and sensory performance of a protein-based sweetener (MNEI), sucrose, and aspartame in yogurt[J]. J Dairy Sci, 2017, 100(12): 9539-9550. [2] YOKOYAMA R, TAHARABARU T, NISHIDA T, et al. Lactose-appended β-cyclodextrin as an effective nanocarrier for brain delivery[J]. J Controlled Release, 2020, 328: 722-735. [3] SUN S, WEI X, YOU C. The construction of an in vitro synthetic enzymatic biosystem that facilitates laminaribiose biosynthesis from maltodextrin and glucose[J]. Biotechnol J, 2019, 14(4): 1800493. [4] LI L, MCKENNA K R, LI Z, et al. Rapid resolution of carbohydrate isomers via multi-site derivatization ion mobility-mass spectrometry[J]. Analyst, 2018, 143(4): 949-955. [5] KRENKOVA J, LISKOVA M, CMELIK R, et al. Multi-cationicaminopyrene-based labeling tags for oligosaccharide analysis by capillary electrophoresis-mass spectrometry[J]. Anal Chim Acta, 2020, 1095: 226-232. [6] HETRICK E M, KRAMER TT, RISLEY D S. Evaluation of a hydrophilic interaction liquid chromatography design space for sugars and sugar alcohols[J]. J Chromatogr A, 2017, 1489: 65-74. [7] HYVÄRINEN S, MIKKOLA J P,MURZIN D Y, et al. Sugars and sugar derivatives in ionic liquid media obtained from lignocellulosic biomass: comparison of capillary electrophoresis and chromatographic analysis[J].Catal Today, 2014, 223: 18-24. [8] WINTER D L, MASTELLONE J, KABIR K M M, et al. Separation of isobaric mono-and dimethylatedrgg-repeat peptides by differential ion mobility-mass spectrometry[J]. Anal Chem, 2019, 91(18): 11827-11833. [9] FLICK T G, CAMPUZANO I D G, BARTBERGER M D. Structural resolution of 4-substitutedproline diastereomers with ion mobility spectrometry via alkali metal ion cationization[J]. Anal Chem, 2015, 87(6): 3300-3307. [10] RAPPOPORT D, FURCHE F. Property-optimized Gaussian basis sets for molecular response calculations[J]. J Chem Phys, 2010, 133(13): 134105. [11] ASBURY G R, HILL JR H H. Evaluation of ultrahigh resolution ion mobility spectrometry as an analytical separation device in chromatographic terms[J]. J Microcolumn Sep, 2000, 12(3): 172-178. [12] MASON E A, SCHAMP JR H W. Mobility of gaseous ionsin weak electric fields[J]. Ann Phys, 1958, 4(3): 233-270. [13] MACKJ E. Average cross-sectional areas of molecules by gaseous diffusion methods[J]. J Am Chem Soc, 1925, 47(10): 2468-2482. [14] SHVARTSBURG A A, JARROLD M F. An exact hard-spheres scattering model for the mobilities of polyatomic ions[J]. Chem Phys Lett, 1996, 261(1/2): 86-91. [15] MESLEH M F, HUNTER J M, SHVARTSBURG A A, et al. Structural information from ion mobility measurements: effects of the long-range potential[J]. J Phys Chem, 1996, 100(40): 16082-16086. [16] LIANG T, ZHOU M, ZHANG P, et al. Multilayer in-plane graphene/hexagonal boron nitride heterostructures: insights into the interfacial thermal transport properties[J]. Int J Heat Mass Transfer, 2020, 151: 119395. [17] LIANG T, ZHANG P, YUAN P, et al. In-plane thermal transport in black phosphorene/graphene layered heterostructures: a molecular dynamics study[J]. Phys Chem Chem Phys, 2018, 20(32): 21151-21162. [18] HUANG Y, DODDS E D. Ion mobility studies of carbohydrates as group Iadducts: isomer specific collisional cross section dependence on metal ion radius[J]. Anal Chem, 2013, 85(20): 9728-9735. |