[1] KUMAR S, JAGIELSKI J, KALLIKOUNIS N, et al. Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: achieving recommendation 2020 color coordinates[J]. Nano Lett, 2017, 17(9): 5277-5284. [2] ROSSI D, PAROBEK D, DONG Y T, et al. Dynamics of exciton-Mn energy transfer in Mn-doped CsPbCl3 perovskite nanocrystals[J]. J Phys Chem C, 2017, 121(32): 17143-17149. [3] PU C, DAI X, SHU Y, et al. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots[J]. Nat Commun, 2020, 11(1): 937. [4] REISS P, CARRIERE M, LINCHENEAU C, et al. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials[J]. Chem Rev, 2016, 116(18): 10731-819. [5] MILSTEIN T J, KROUPA D M, GAMELIN D R. Picosecond quantum cutting generates photoluminescence quantum yields over 100% in ytterbium-doped CsPbCl3 nanocrystals[J]. Nano Lett, 2018, 18(6): 3792-3799. [6] DAS S, DE A, SAMANTA A. Ambient condition Mg2+ doping producing highly luminescent green- and violet-emitting perovskite nanocrystals with reduced toxicity and enhanced stability[J]. J Phys Chem Lett, 2020, 11(3): 1178-1188. [7] KOSCHER B A, SWABECK J K, BRONSTEIN N D, et al. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment[J]. J Am Chem Soc, 2017, 139(19): 6566-6569. [8] TAN Y S, ZOU Y T, WU L Z, et al. Highly luminescent and stable perovskite nanocrystals with octylphosphonic acid as a ligand for efficient light-emitting diodes[J]. ACS Appl Mater Interfaces, 2018, 10(4): 3784-3792. [9] PAROBEK D, ROMAN B J, DONG Y, et al. Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals[J]. Nano Lett, 2016, 16(12): 7376-7380. [10] LI X M, WU Y, ZHANG S L, et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J]. Adv Funct Mater, 2016, 26(15): 2435-2445. [11] DING D, LI H A, LI J E N, et al. Effect of mechanical forces on thermal stability reinforcement for lead based perovskite materials[J]. J Mater Chem A, 2019, 7(2): 540-548. [12] CHEN D Q, LI J N, CHEN X, et al. Grinding synthesis of APbX3(A=MA, FA, Cs; X=Cl, Br, I) perovskite nanocrystals[J]. ACS Appl Mater Interfaces, 2019, 11(10): 10059-10067. [13] CHEN M, ZOU Y, WU L, et al. Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire[J]. Adv Funct Mater, 2017, 27(23): 1701121. [14] CHEN Y, YANG S, CHEN X, et al. Direct insight into crystallization and stability of hybrid perovskite CH3NH3PbI3 via solvothermal synthesis[J]. J Mater Chem, 2015, 3(31): 15854-15857. [15] CHEN D Q, FANG G L, CHEN X, et al. Mn-Doped CsPbCl3 perovskite nanocrystals: solvothermal synthesis, dual-color luminescence and improved stability[J]. J Mater Chem C, 2018, 6(33): 8990-8998. [16] HUANG G G, WANG C L, XU S H, et al. Postsynthetic doping of MnCl2 molecules into preformed CsPbBr3 perovskite nanocrystals via a halide exchange-driven cation exchange[J]. Adv Mater, 2017, 29: 1700095. [17] CHEN D Q, ZHOU S, FANG G L, et al. Fast room-temperature cation exchange synthesis of Mn-doped CsPbCl3 nanocrystals driven by dynamic halogen exchange[J]. ACS Appl Mater Interfaces, 2018, 10(46): 39872-39878. [18] LI F, XIA Z G, GONG Y, et al. Optical properties of Mn2+ doped cesium lead halide perovskite nanocrystals via a cation-anion co-substitution exchange reaction[J]. J Mater Chem C, 2017, 5(36): 9281-9287. [19] QIAO T, PAROBEK D, DONG Y T, et al. Photoinduced Mn doping in cesium lead halide perovskite nanocrystals[J]. Nanoscale, 2019, 11(12): 5247-5253. [20] TONG Y, BLADT E, AYGUELER M F, et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication[J]. Angew Chem Int Ed, 2016, 55(44): 13887-13892. [21] XU W, LI F M, LIN F Y, et al. Synthesis of CsPbCl3-Mn nanocrystals via cation exchange[J]. Adv Opt Mater, 2017, 5(21): 1700520. [22] LI C H, LI Y, ZHOU T L, et al. Ultrasonic synthesis of Mn-doped CsPbCl3 quantum dots (QDs) with enhanced photoluminescence[J]. Opt Mater, 2019, 94: 41-46. [23] YAO W, LI D M, WANG H, et al. Room-temperature synthesis of Mn2+-doped cesium lead halide perovskite nanocrystals via a transformation doping method[J]. J Mater Sci-Mater Electron, 2019, 30(1): 180-188. [24] SHEN C Y, ZHAO Y, YUAN L, et al. Transition metal ion doping perovskite nanocrystals for high luminescence quantum yield[J]. Chem Eng J, 2020, 382: 122868. [25] MA J P, CHEN Y M, ZHANG L M, et al. Insights into the local structure of dopants, doping efficiency, and luminescence properties of lanthanide-doped CsPbCl3 perovskite nanocrystals[J]. J Mater Chem C, 2019, 7(10): 3037-3048. [26] YONG Z J, GUO S Q, MA J P, et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield[J]. J Am Chem Soc, 2018, 140(31): 9942-9951. [27] GUVENC C M, YALCINKAYA Y, OZEN S, et al. Gd3+-doped α-CsPbI3 nanocrystals with better phase stability and optical properties[J]. J Phys Chem C, 2019, 123(40): 24865-24872. [28] ZHOU D, SUN R, XU W, et al. Impact of host composition, codoping, or tridoping on quantum-cutting emission of ytterbium in halide perovskite quantum dots and solar cell applications[J]. Nano Lett, 2019, 19(10): 6904-6913. [29] BI C H, WANG S X, LI Q, et al. Thermally stable copper(II)-doped cesium lead halide perovskite quantum dots with strong blue emission[J]. J Phys Chem Lett, 2019, 10(5): 943-952. [30] ZHANG Z L, SHEN L L, ZHANG H L, et al. Novel red-emitting CsPb1-xTixI3 perovskite QDs@glasses with ambient stability for high efficiency white LEDs and plant growth LEDs[J]. Chem Eng J, 2019, 378. [31] RANA P J S, SWETHA T, MANDAL H, et al. Energy transfer dynamics of highly stable Fe3+ doped CsPbCl3 perovskite nanocrystals with dual-color emission[J]. J Phys Chem C, 2019, 123(27): 17026-17034. [32] SHAO H, BAI X, CUI H N, et al. White light emission in Bi3+/Mn2+ ion co-doped CsPbCl3 perovskite nanocrystals[J]. Nanoscale, 2018, 10(3): 1023-1029. [33] YIN J, AHMED G H, BAKR O M, et al. Unlocking the effect of trivalent metal doping in all-inorganic CsPbBr3 perovskite[J]. ACS Energy Lett, 2019, 4(3): 789-795. [34] MIR W J, JAGADEESWARARAO M, DAS S, et al. Colloidal Mn-doped cesium lead halide perovskite nanoplatelets[J]. ACS Energy Lett, 2017, 2(3): 537-543. [35] PAUL S, BLADT E, RICHTER A F, et al. Manganese-doping-induced quantum confinement within host perovskite nanocrystals through ruddlesden-popper defects[J]. Angew Chem Int Ed, 2020, 59(17): 6794-6799. [36] PAN G C, BAI X, YANG D W, et al. Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties[J]. Nano Lett, 2017, 17(12): 8005-8011. [37] YAO J S, GE J, HAN B N, et al. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes[J]. J Am Chem Soc, 2018, 140(10): 3626-3634. [38] PINCHETTI V, ANAND A, AKKERMAN Q A, et al. Trap-mediated two-step sensitization of manganese dopants in perovskite nanocrystals[J]. ACS Energy Lett, 2019, 4(1): 85-93. [39] WAI R B, RAMESH N, AIELLO C D, et al. Resolving enhanced Mn2+ luminescence near the surface of CsPbCl3 with time-resolved cathodoluminescence imaging[J]. J Phys Chem Lett, 2020, 11(7): 2624-2629. [40] BEGUM R, PARIDA M R, ABDELHADY A L, et al. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping[J]. J Am Chem Soc, 2017, 139(2): 731-737. [41] BRENIAUX E, MARIN-BERNARDEZ E J, GALLET E, et al. Synthesis and characterization of Cs2Pb1-xBixCl2I2(0≤x≤0.15) derivative perovskite[J]. Mater Chem Phys, 2020, 247: 122870. [42] PRADEEP K R, CHAKRABORTY S, VISWANATHA R. Stability of Sn based inorganic perovskite quantum dots[J]. Mater Res Express, 2019, 6(11): 114004. [43] 徐妍, 夏超, 曹蒙蒙, 等. 全无机铯铅卤钙钛矿稳定性的研究进展[J]. 聊城大学学报, 2019, 32(1): 1672-6634. XU Y, XIA C, CAO M M, et al. Research progress on the stability of all-inorganic CsPbX3 perovskites nanocrystals[J]. J Liaocheng Univ, 2019, 32(1): 1672-6634. [44] ZOU S H, LIU Y S, LI J H, et al. Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes[J]. J Am Chem Soc, 2017, 139(33): 11443-11450. [45] LIU M, ZHONG G H, YIN Y M, et al. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight[J]. Adv Sci, 2017, 4(11). [46] TSAI H, NIE W, BLANCON J C, et al. High-efficiency two-dimensional ruddlesden-popper perovskite solar cells[J]. Nature, 2016, 536(7616): 312-316. [47] JU M G, DAI J, MA L, et al. Lead-free mixed tin and germanium perovskites for photovoltaic application[J]. J Am Chem Soc, 2017, 139(23): 8038-8043. [48] MA J J, YAO Q T, MCLEOD J A, et al. Investigating the luminescence mechanism of Mn-doped CsPb(Br/Cl)3 nanocrystals[J]. Nanoscale, 2019, 11(13): 6182-6191. [49] ZHU J, YANG X, ZHU Y, et al. Room-temperature synthesis of Mn-doped cesium lead halide quantum dots with high Mn substitution ratio[J]. J Phys Chem Lett, 2017, 8(17): 4167-4171. [50] LIU H, WU Z, SHAO J, et al. CsPbxMn1-xCl3 perovskite quantum dots with high Mn substitution ratio[J]. ACS Nano, 2017, 11(2): 2239-2247. [51] SUBHANI W S, WANG K, DU M Y, et al. Goldschmidt-rule-deviated perovskite CsPbIBr2 by barium substitution for efficient solar cells[J]. Nano Energy, 2019, 61: 165-172. [52] DU Z, FU D, YANG T, et al. Photodetectors with ultra-high detectivity based on stabilized all-inorganic perovskite CsPb0.922Sn0.078I3 nanobelts[J]. J Mater Chem C, 2018, 6(23): 6287-6296. [53] ZHANG X T, WANG H, HU Y, et al. Strong blue emission from Sb3+-doped super small CsPbBr3 nanocrystals[J]. J Phys Chem Lett, 2019, 10(8): 1750-1756. [54] PAN G C, BAI X, XU W, et al. Bright blue light emission of Ni2+ ion-doped CsPbClxBr3-x perovskite quantum dots enabling efficient light-emitting devices[J]. ACS Appl Mater Interfaces, 2020, 12(12): 14195-14202. [55] LIU Z, HU J, JIAO H, et al. Chemical reduction of intrinsic defects in thicker heterojunction planar perovskite solar cells[J]. Adv Mater, 2017, 29(23). [56] MA J P, CHEN J K, YIN J, et al. Doping induces structural phase transitions in all-inorganic lead halide perovskite nanocrystals[J]. ACS Mater Lett, 2020, 2(4): 367-375. [57] WANG P C, DONG B H, CUI Z J, et al. Synthesis and characterization of Mn-doped CsPb(Cl/Br)3 perovskite nanocrystals with controllable dual-color emission[J]. RSC Adv, 2018, 8(4): 1940-1947. [58] SUN C, WANG L, SU S J, et al. Highly efficient Mn-doped CsPb(Cl/Br)3 quantum dots for white light-emitting diodes[J]. Nanotechnology, 2020, 31(6): 7. [59] QIN H M, WANG C L, XU J K, et al. High perovskite-to-manganese energy transfer efficiency in single-component white-emitting Mn-doped halide perovskite quantum dots[J]. J Mater Sci, 2020, 55(7): 2984-2993. [60] FEI L L, YUAN X, HUA J, et al. Enhanced luminescence and energy transfer in Mn2+ doped CsPbCl3-xBrx perovskite nanocrystals[J]. Nanoscale, 2018, 10(41): 19435-19442. [61] LI X Y, DUAN S, LIU H C, et al. Mechanism for the extremely efficient sensitization of Yb3+ luminescence in CsPbCl3 nanocrystals[J]. J Phys Chem Lett, 2019, 10(3): 487-492. [62] ZHOU L, LIU T R, ZHENG J, et al. Dual-emission and two charge-transfer states in ytterbium-doped cesium lead halide perovskite solid nanocrystals[J]. J Phys Chem C, 2018, 122(47): 26825-26834. [63] ISHII A, MIYASAKA T. Sensitized Yb3+ luminescence in CsPbCl3 film for highly efficient near-infrared light-emitting diodes[J]. Adv Sci, 2020, 7(4): 1903142. [64] LESAGE A, VAN DER LAAN M, GOMEZ L, et al. Substitutional doping of Yb3+ in CsPbBrxCl3-x Nanocrystals[J]. J Phys Chem C, 2020, 124(11): 6413-6417. [65] LI Q Q, LIU Y F, CHEN P, et al. Excitonic luminescence engineering in tervalent-europium-doped cesium lead halide perovskite nanocrystals and their temperature-dependent energy transfer emission properties[J]. J Phys Chem C, 2018, 122(50): 29044-29050. [66] OZEN S, GUNER T, TOPCU G, et al. Experimental and first-principles investigation of Cr-driven color change in cesium lead halide perovskites[J]. J Appl Phys, 2019, 125(22): 225705. [67] CAI T, YANG H J, HILLS-KIMBALL K, et al. Synthesis of all-inorganic Cd-doped CsPbCl3 perovskite nanocrystals with dual-wavelength emission[J]. J Phys Chem Lett, 2018, 9(24): 7079-7084. [68] MIR W J, MAHOR Y, LOHAR A, et al. Postsynthesis doping of Mn and Yb into CsPbX3(X=CI, Br, or I) perovskite nanocrystals for downconversion emission[J]. Chem Mater, 2018, 30(22): 8170-8178. [69] NARESH V and LEE N, Zn(II)-doped cesium lead halide perovskite nanocrystals with high quantum yield and wide color tunability for color-conversion light-emitting displays[J]. ACS Appl Nano Mater, 2020, 3(8): 7621-7632. [70] CHEN W, TANG X, ZANG Z, et al. Tunable dual emission in Mn2+-doped CsPbX3(X=Cl, Br) quantum dots for high efficiency white light-emitting diodes[J]. Nanotechnology, 2019, 30(7): 075704. [71] CHEN J K, MA J P, GUO S Q, et al. High-efficiency violet-emitting all-inorganic perovskite nanocrystals enabled by alkaline-earth metal passivation[J]. Chem Mater, 2019, 31(11): 3974-3983. [72] SUN R, LU P, ZHOU D, et al. Samarium-doped metal halide perovskite nanocrystals for single-component electroluminescent white light-emitting diodes[J]. ACS Energy Lett, 2020, 5(7): 2131-2139. [73] PAROBEK D, DONG Y T, QIAO T, et al. Direct hot-injection synthesis of Mn-doped CsPbBr3 nanocrystals[J]. Chem Mater, 2018, 30(9): 2939-2944. [74] ZHANG X, CAO W, WANG W, et al. Efficient light-emitting diodes based on green perovskite nanocrystals with mixed-metal cations[J]. Nano Energy, 2016, 30: 511-516. |