[1] Mosier N,Wywan C,Dale B,et al. Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass[J]. Bioresour Technol,2005,96(6):673-686. [2] LIN Lu,HE Beihai,SUN Runcang,et al.High Value Chemicals from Lignocellulosic Biomass[J]. Prog Chem,2007,19(Z2):1206-1216(in Chinese) . 林鹿,何北海,孙润仓,等. 木质生物质转化高附加值化学品[J]. 化学进展,2007,19(Z2):1206-1216. [3] YU Qiang,ZHUANG Xinshu,YUAN Zhenhong,et al. Research Progress on Fuel and Chemicals Production from Lignocellulose Biomass[J]. Chem Ind Eng Proc,2012,31(4):784-791(in Chinese). 余强,庄新姝,袁振宏,等. 木质纤维素类生物质制取燃料及化学品的研究进展[J]. 化工进展,2012,31(4):784-791. [4] Girisuta B,Janssen L P B M,Heeres H J. Green Chemicals:A Kinetic Study on the Conversion of Glucose to Levulinic Acid[J]. Chem Eng Res Des,2006,84(5):339-349. [5] Rackemann D W,Doherty W O. The Conversion of Lignocellulosics to Levulinic Acid[J]. Biofuel Bioprod Biorefin,2011,5(2):198-214. [6] Banerjee B,Singuru R,Kundu S K,et al. Towards Rational Design of Core-Shell Catalytic Nanoreactor with High Performance Catalytic Hydrogenation of Levulinic Acid[J]. Catal Sci Technol,2016,6(13):5102-5115. [7] Feng H,Li X,Qian H,et al. Efficient and Sustainable Hydrogenation of Levulinic-acid to gamma-Valerolactone in Aqueous Solution over Acid-resistant CePO4/Co2P Catalysts[J]. Green Chem,2019,21(7):1743-1756. [8] Li W,Xie J,Lin H,et al. Highly Efficient Hydrogenation of Biomass-Derived Levulinic Acid to γ-Valerolactone Catalyzed by Iridium Pincer Complexes[J]. Green Chem,2012,14(9):2388-2390. [9] Mamun O,Saleheen M,Bond J Q,et al. Investigation of Solvent Effects in the Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone over Ru Catalysts[J]. J Catal,2019,379:164-179. [10] Pinto B P,Fortuna A L L,Cardoso C P,et al. Hydrogenation of Levulinic Acid (LA) to γ-Valerolactone (GVL) over Ni-Mo/C Catalysts and Water-Soluble Solvent Systems[J]. Catal Lett,2017,147(3):751-757. [11] Upare P P,Lee J M,Hwang D W,et al. Selective Hydrogenation of Levulinic Acid to γ-Valerolactone over Carbon-Supported Noble Metal Catalysts[J]. J Ind Eng Chem,2011,17(2):287-292. [12] Ahn Y C,Han J. Catalytic Production of 1,4-Pentanediol from Corn Stover[J]. Bioresour Technol,2017,245(Pt A):442-448. [13] Alonso D M,Wettstein S G,Dumesic J A,et al. Gamma-Valerolactone, A Austainable Platform Molecule Derived from Lignocellulosic Biomass[J]. Green Chem,2013,15(3):584-595. [14] Corbel-demailly L,Ly B K,Minh D P,et al. Heterogeneous Catalytic Hydrogenation of Biobased Levulinic and Succinic Acids in Aqueous Solutions[J]. ChemSusChem,2013,6(12):2388-2395. [15] Mehdi H,Fabos V,Tuba R,et al. Integration of Homogeneous and Heterogeneous Catalytic Processes for a Multi-step Conversion of Biomass:From Sucrose to Levulinic Acid, γ-Valerolactone, 1,4-Pentanediol, 2-Methyl-tetrahydrofuran, and Alkanes[J]. Top Catal,2008,48(1/2/3/4):49-54. [16] Pagliaro M,Ciriminna R,Kimura H,et al. From Glycerol to Value-Added Products[J]. Angew Chem Int Ed,2007,46(24):4434-4340. [17] Climent M J,Corma A,Iborra S, Conversion of Biomass Platform Molecules into Fuel Additives and Liquid Hydrocarbon Fuels[J]. Green Chem,2014,16(2):516-547. [18] Lange J P,Price R,Ayoub P M,et al. Valeric Biofuels:A Platform of Cellulosic Transportation Fuels[J]. Angew Chem Int Ed,2010,49(26):4479-4483. [19] Obregon I,Gandarias I,Al-shaal M G,et al. The Role of the Hydrogen Source on the Selective Production of γ-Valerolactone and 2-Methyltetrahydrofuran from Levulinic Acid[J]. ChemSusChem,2016,9(17):2488-2495. [20] Pace V,Hoyos D P,Castoldi L,et al. 2-Methyltetrahydrofuran (2-MeTHF):A Biomass-Derived Solvent with Broad Application in Organic Chemistry[J]. ChemSusChem,2012,5(8):1369-1379. [21] Sun D,Saito T,Yamada Y,et al. Hydrogenation of γ-Valerolactone to 1,4-Pentanediol in a Continuous Flow Reactor[J]. Appl Catal A,2017,542:289-295. [22] Zhai X J,Li C,Di X,et al. Preparation of Cu/MgO Catalysts for γ-Valerolactone Hydrogenation to 1,4-Pentanediol by MOCVD[J]. J Fuel Chem Technol,2017,45(5):537-546. [23] Du X,Bi Q,Liu Y,et al. Tunable Copper-Catalyzed Chemoselective Hydrogenolysis of Biomass-Derived γ-Valerolactone into 1,4-Pentanediol or 2-Methyltetrahydrofuran[J]. Green Chem,2012,14(4):935-939. [24] Obregon I,Gandarias I,Ocio A,et al. Structure-Activity Relationships of Ni-Cu/Al2O3 Catalysts for γ-Valerolactone Conversion to 2-Methyltetrahydrofuran[J]. Appl Catal B,2017,210:328-341. [25] Li M,Li G,Li N,et al. Aqueous Phase Hydrogenation of Levulinic Acid to 1,4-Pentanediol[J]. Chem Commun,2014,50(12):1414-1416. [26] Wu J,Gao G,Sun P,et al. Synergetic Catalysis of Bimetallic CuCo Nanocomposites for Selective Hydrogenation of Bioderived Esters[J]. ACS Catal,2017,7(11):7890-7901. [27]Xie Z,Chen B,Wu H,et al. Highly Efficient Hydrogenation of Levulinic Acid into 2-Methyltetrahydrofuran over Ni-Cu/Al2O3-ZrO2 Bifunctional Catalysts[J]. Green Chem,2019,21(3):606-613. [28] Xu Q,Li X,Pan T,et al. Supported Copper Catalysts for Highly Efficient Hydrogenation of Biomass-Derived Levulinic Acid and γ-Valerolactone[J]. Green Chem,2016,18(5):1287-1294. [29] Kanai Y,Watanabe T,Fujitani T,et al. Evidence for the Mmigration of ZnOx in a Cu/ZnO Methanol Synthesis Catalyst[J]. Catal Lett,1994,27(1/2/3/4):67-78. [30] Kuld S,Conradsen C,Moses P G,et al. Quantification of Zinc Atoms in a Surface Alloy on Copper in an Industrial-Type Methanol Synthesis Catalyst[J]. Angew Chem Int Ed,2014,53(23):5941-5945. [31] Kuld S,Thorhauge M,Falsig H,et al. Quantifying the Promotion of Cu Catalysts by ZnO for Mmethanol Synthesis[J]. Science,2016,352(6288):969-974. [32] Tisseraud C,Comminges C,Belin T,et al. The Cu-ZnO Synergy in Methanol Synthesis from CO2, Part 2:Origin of the Methanol and CO Selectivities Explained by Experimental Studies and a Sphere Contact Quantification Model in Randomly Packed Binary Mixtures on Cu-ZnO Coprecipitate Catalysts[J]. J Catal,2015,330:533-544. [33] Valant A L,Comminges C,Tisseraud C,et al. The Cu-ZnO Synergy in Methanol Synthesis from CO2, Part 1:Origin of Active Site Explained by Experimental Studies and a Sphere Contact Quantification Model on Cu+ZnO Mechanical Mixtures[J]. J Catal,2015,324:41-49. |