[1] | Gao J F,Song X,Huang X W,et al. Facile Preparation of Polymer Microspheres and Fibers with a Hollow Core and Porous Shell for Oil Adsorption and Oil/Water Separation[J]. Appl Surf Sci,2018,439:394-404. | [2] | Fard A K,Rhadfi T,Mckay G,et al. Enhancing Oil Removal from Water Using Ferric Oxide Nanoparticles Doped Carbon Nanotubes Adsorbents[J]. Chem Eng J,2016,293:90-101. | [3] | Zouboulis A I,Avranas A.Treatment of Oil-in-Water Emulsions by Coagulation and Dissolved-Air Flotation[J]. Colloids Surf A,2000,172(1/3):153-161. | [4] | Nikkhah M,Tohidian T,Rahimpour M R,et al. Efficient Demulsification of Water-in-Oil Emulsion by a Novel Nano-Titania Modified Chemical Demulsifier[J]. Chem Eng Res Des,2015,94:164-172. | [5] | Tashiro K,Kobayashi M.Theoretical Evaluation of Three-Dimensional Elastic Constants of Native and Regenerated Celluloses:Role of Hydrogen Bonds[J]. Polymer,1991,32(8):1516-1526. | [6] | Šturcová A,R Davies G,J Eichhorn S,et al. Elastic Modulus and Stress-Transfer Properties of Tunicate Cellulose Whiskers[J]. Biomacromolecules,2005,6(2):1055-1061. | [7] | Mansouri J,Harrisson S,Chen V.Strategies for Controlling Biofouling in Membrane Filtration Systems:Challenges and Opportunities[J]. J Mater Chem,2010,20(22):4567-4586. | [8] | Liu R C,Dangwal S,Shaik I,et al. Hydrophilicity-Controlled MFI-Type Zeolite-Coated Mesh for Oil/Water Separation[J]. Sep Purif Technol,2018,195:163-169. | [9] | Xue Z X,Cao Y Z,Liu N,et al. Special Wettable Materials for Oil/Water Separation[J]. J Mater Chem A,2014,2(8):2445-2460. | [10] | Cheng Z J,Li C,Lai H,et al. A pH-Responsive Superwetting Nanostructured Copper Mesh Film for Separating both Water-in-Oil and Oil-in-Water Emulsions[J]. RSC Adv,2016,6(76):72317-72325. | [11] | Guo J H,Wang J K,Gao Y H,et al. pH-Responsive Sponges Fabricated by Ag-S Ligands Possess Smart Double-Transformed Superhydrophilic Superhydrophobic Superhydrophilic Wettability for Oil-Water Separation[J]. ACS Sustainable Chem Eng,2017,5(11):10772-10782. | [12] | Fu Y C,Jin B Y,Zhang Q H,et al. pH-Induced Switchable Superwettability of Efficient Antibacterial Fabrics for Durable Selective Oil/Water Separation[J]. ACS Appl Mater Interfaces,2017,9(35):30161-30170. | [13] | Pham V H,Dickerson J H.Superhydrophobic Silanized Melamine Sponges as High Efficiency Oil Absorbent Materials[J]. ACS Appl Mater Interfaces,2014,6(16):14181-14188. | [14] | Ge J,Ye Y D,Yao H B,et al. Pumping Through Porous Hydrophobic/Oleophilic Materials:An Alternative Technology for Oil Spill Remediation[J]. Angew Chem Int Ed,2014,53(14):3612-3616. | [15] | Jang S H,Jeong Y G,Min B G,et al. Preparation and Lead Ion Removal Property of Hydroxyapatite/Polyacrylamide Composite Hydrogels[J]. J Hazard Mater,2008,159(2/3):294-299. | [16] | Laus R,de Fávere V T. Competitive Adsorption of Cu(II) and Cd(II) Ions by Chitosan Crosslinked with Epichlorohydrin-Triphosphate[J]. Bioresour Technol,2011,102(19):8769-8776. | [17] | Zhao L,Mitomo H.Adsorption of Heavy Metal Ions from Aqueous Solution onto Chitosan Entrapped CM-Cellulose Hydrogels Synthesized by Irradiation[J]. J Appl Polym Sci,2008,110(3):1388-1395. | [18] | MENG Fanning,SONG Jing,ZHANG Xinmiao,et al. Research Progress of Membranes with Special Wettability for Oil-Water Separation[J]. Environ Prot Chem Ind,2019:1-9(in Chinese). 孟凡宁,宋菁,张新妙,等. 超润湿性油水分离膜的研究进展[J]. 化工环保,2019:1-9. | [19] | Zhou K,Zhang Q G,Li H M,et al. Ultrathin Cellulose Nanosheet Membranes for Superfast Separation of Oil-in-Water Nanoemulsions[J]. Nanoscale,2014,6(17):10363-10369. | [20] | Gao X F,Xu L P,Xue Z X,et al. Dual-Scaled Porous Nitrocellulose Membranes with Underwater Superoleophobicity for Highly Efficient Oil/Water Separation[J]. Adv Mater,2014,26(11):1771-1775. | [21] | Zhang H,Li Y Q,Shi R H,et al. A Robust Salt-Tolerant Superoleophobic Chitosan/Nanofibrillated Cellulose Aerogel for Highly Efficient Oil/Water Separation[J]. Carbohydr Polym,2018,200:611-615. | [22] | Sun F F,Liu W,Dong Z X,et al. Underwater Superoleophobicity Cellulose Nanofibril Aerogel Through Regioselective Sulfonation for Oil/Water Separation[J]. Chem Eng J,2017,330:774-782. | [23] | Wang G,He Y,Wang H,et al. A Cellulose Sponge with Robust Superhydrophilicity and Underwater Superoleophobicity for Highly Effective Oil/Water Separation[J]. Green Chem,2015,17(5):3093-3099. | [24] | Chen W J,Su Y L,Peng J M,et al. Engineering a Robust, Versatile Amphiphilic Membrane Surface Through Forced Surface Segregation for Ultralow Flux-Decline[J]. Adv Funct Mater,2011,21(1):191-198. | [25] | Chen W J,Su Y L,Zhang L,et al. In Situ Generated Silica Nanoparticles as Pore-Forming Agent for Enhanced Permeability of Cellulose Acetate Membranes[J]. J Membr Sci,2010,348(1/2):75-83. | [26] | Xue Z X,Liu M J,Jiang L.Recent Developments in Polymeric Superoleophobic Surfaces[J]. J Polym Sci Pol Phys,2012,50(17):1209-1224. | [27] | Cao Y Z,Chen Y N,Liu N,et al. Mussel-Inspired Chemistry and Stöber Method for Highly Stabilized Water-in-Oil Emulsions Separation[J]. J Mater Chem A,2014,2(48):20439-20443. | [28] | Dang Z,Liu L B,Li Y,et al. In Situ and Ex Situ pH-Responsive Coatings with Switchable Wettability for Controllable Oil/Water Separation[J]. ACS Appl Mater Interfaces,2016,8(45):31281-31288. | [29] | Fang W Y,Liu L B,Guo G L.Tunable Wettability of Electrospun Polyurethane/Silica Composite Membranes for Effective Separation of Water-in-Oil and Oil-in-Water Emulsions[J]. Chem-Eur J,2017,23(47):11253-11260. | [30] | Chen W,He H,Zhu H,et al. Thermo-responsive Cellulose-Based Material with Switchable Wettability for Controllable Oil/Water Separation[J]. Polymers,2018,10(6):592. | [31] | Zhan H,Peng N,Lei X,et al. UV-Induced Self-Cleanable TiO2/Nanocellulose Membrane for Selective Separation of Oil/Water Emulsion[J]. Carbohydr Polym,2018,201:464-470. | [32] | Cheng M X,He H,Zhu H X,et al. Preparation and Properties of pH-Responsive Reversible-Wettability Biomass Cellulose-Based Material for Controllable Oil/Water Separation[J]. Carbohydr Polym,2019,203:246-255. | [33] | Fan T,Qian Q H,Hou Z H,et al. Preparation of Smart and Reversible Wettability Cellulose Fabrics for Oil/Water Separation Using a Facile and Economical Method[J]. Carbohydr Polym,2018,200:63-71. | [34] | Nosonovsky M,Bhushan B.Biomimetic Superhydrophobic Surfaces:Multiscale Approach[J]. Nano Lett,2007,7(9):2633-2637. | [35] | Patankar N A.Mimicking the Lotus Effect:Influence of Double Roughness Structures and Slender Pillars[J]. Langmuir,2004,20(19):8209-8213. | [36] | Peng H I,Wang H,Wu J N,et al. Preparation of Superhydrophobic Magnetic Cellulose Sponge for Removing Oil from Water[J]. Ind Eng Chem Res,2016,55(3):832-838. | [37] | Matin A,Baig U,Gondal M A,et al. Facile Fabrication of Superhydrophobic/Superoleophilic Microporous Membranes by Spray-Coating Ytterbium Oxide Particles for Efficient Oil-Water Separation[J]. J Membr Sci,2018,548:390-397. | [38] | Guo D Y,Chen J H,Hou K,et al. A Facile Preparation of Superhydrophobic Halloysite-Based Meshes for Efficient Oil-Water Separation[J]. Appl Clay Sci,2018,156:195-201. | [39] | XU Yao.Development and Application of Sol-Gel Chemistry[J]. Sci Technol Rev,2017,35(4):96(in Chinese). 徐耀. 溶胶-凝胶化学的发展和应用[J]. 科技导报,2017,35(4):96. | [40] | LIU Xiaohong,CHEN Zhiyong,DENG Shanjiang.Current Situation and Development Trend of Vapor Deposition Tachnology[J]. J North China Inst Aerospace Eng,2006,(3):26-28(in Chinese). 刘晓红,陈志勇,邓山江. 气相沉积技术的现状与发展[J]. 北华航天工业学院学报,2006,(3):26-28. | [41] | MA Shanshan,ZHANG Meiyun,YANG Bin,et al. Study on the Preparation of Cellulose-Based Porous Material by Freeze-Drying Process[J]. China Pulp Paper,2017,36(11):29-36(in Chinese). 马珊珊,张美云,杨斌,等. 冷冻干燥法制备纤维素基多孔材料的研究[J]. 中国造纸,2017,36(11):29-36. | [42] | Lv N,Wang X L,Peng S T,et al. Superhydrophobic/Superoleophilic Cotton-Oil Absorbent:Preparation and Its Application in Oil/Water Separation[J]. RSC Adv,2018,8(53):30257-30264. | [43] | Zhou C L,Chen Z D,Yang H,et al. A Nature-Inspired Strategy Toward Superhydrophobic Fabrics for Versatile Oil/Water Separation[J]. ACS Appl Mater Interfaces,2017,9(10):9184-9194. | [44] | Guan H,Cheng Z Y,Wang X Q.Highly Compressible Wood Sponges with a Spring-Like Lamellar Structure as Effective and Reusable Oil Absorbents[J]. ACS Nano,2018,12(10):10365-10373. | [45] | Zhou S K,Liu P P,Wang M,et al. Sustainable, Reusable, and Superhydrophobic Aerogels from Microfibrillated Cellulose for Highly Effective Oil/Water Separation[J]. ACS Sustainable Chem Eng,2016,4(12):6409-6416. | [46] | Mi H Y,Jing X,Politowicz A L,et al. Highly Compressible Ultra-Light Anisotropic Cellulose/Graphene Aerogel Fabricated by Bidirectional Freeze Drying for Selective Oil Absorption[J]. Carbon,2018,132:199-209. | [47] | Yuan T,Meng J Q,Hao T Y,et al. A Scalable Method Toward Superhydrophilic and Underwater Superoleophobic PVDF Membranes for Effective Oil/Water Emulsion Separation[J]. ACS Appl Mater Interfaces,2015,7(27):4896-14904. | [48] | He K,Duan H R,Chen G Y,et al. Cleaning of Oil Fouling with Water Enabled by Zwitterionic Polyelectrolyte Coatings:Overcoming the Imperative Challenge of Oil-Water Separation Membranes[J]. ACS Nano,2015,9:9188-9198. | [49] | Zhang S Y,Lu F,Tao L,et al. Bio-inspired Anti-Oil-Fouling Chitosan-Coated Mesh for Oil/Water Separation Suitable for Broad pH Range and Hyper-saline Environments[J]. ACS Appl Mater Interfaces,2013,5(22):11971-11976. | [50] | Chen P C,Xu Z K.Mineral-Coated Polymer Membranes with Superhydrophilicity and Underwater Superoleophobicity for Effective Oil/Water Separation[J]. Sci Rep,2013,3(1):2776. | [51] | Bethke K,Palant ken S,Andrei V,et al. Functionalized Cellulose for Water Purification, Antimicrobial Applications and Sensors[J]. Adv Funct Mater,2018,28(23):1800409. | [52] | Voisin H,Bergstr m L,Liu P,et al. Nanocellulose-Based Materials for Water Purification[J]. Nanomaterials,2017,7(3):57. | [53] | Huang J D,Lyu S Y,Chen Z L,et al. A Facile Method for Fabricating Robust Cellulose Nanocrystal/SiO2 Superhydrophobic Coatings[J]. J Colloid Interface Sci,2019,536:349-362. | [54] | Baidya A,Ganayee M A,Jakka Ravindran S,et al. Organic Solvent-Free Fabrication of Durable and Multifunctional Superhydrophobic Paper from Waterborne Fluorinated Cellulose Nanofiber Building Blocks[J]. ACS Nano,2017,11(11):11091-11099. | [55] | Xiong R,Kim H S,Zhang S D,et al. Template-Guided Assembly of Silk Fibroin on Cellulose Nanofibers for Robust Nanostructures with Ultrafast Water Transport[J]. ACS Nano,2016,11(12):12008-12019. | [56] | Li L X,Hu T,Sun H X,et al. Pressure-Sensitive and Conductive Carbon Aerogels from Poplars Catkins for Selective Oil Absorption and Oil/Water Separation[J]. ACS Appl Mater Interfaces,2017,9(21):18001-18007. | [57] | Yang H T,Deng Y L.Preparation and Physical Properties of Superhydrophobic Papers[J]. J Colloid Interface Sci,2008,325(2):588-593. | [58] | Vasiljevi? J,Tom?i$\check{c}$ B,Jerman I,et al. Novel Multifunctional Water- and Oil-Repellent, Antibacterial, and Flame-Retardant Cellulose Fibres Created by the Sol-Gel Process[J]. Cellulose,2014,21(4):2611-2623. | [59] | Makanjuola O,Ahmed F,Janajreh I,,et al. Development of a Dual-Layered PVDF-HFP/Cellulose Membrane with Dual Wettability for Desalination of Oily Wastewater[J]. J Membr Sci. Development of a Dual-Layered PVDF-HFP/Cellulose Membrane with Dual Wettability for Desalination of Oily Wastewater[J]. J Membr Sci,2019,570/571:418-426. | [60] | Wang N,Xiong D S,Pan S,et al. Superhydrophobic Paper with Superior Stability Against Deformations and Humidity[J]. Appl Surf Sci,2016,389:354-360. |
|