[1] | Saparov B,Mitzi D B.Organic-Inorganic Perovskites:Structural Versatility for Functional Materials Design[J]. Chem Rev,2016,116:4558-4596. | [2] | Kojima A,Teshima K,Shirai Y,et al. Organometal Halide Perovskites as Visible-light Sensitizers for Photovoltaic Cells[J]. J Am Chem Soc,2009,131(17):6050-6051. | [3] | Correabaena J P,Abate A,Saliba M,et al. The Rapid Evolution of Highly Efficient Perovskite Solar Cells[J]. Energy Environ Sci,2017,10(3):710-727. | [4] | Arora N,Dar M I,Hinderhofer A,et al. Perovskite Solar Cells with CuSCN Hole Extraction Layers Yield Stabilized Efficiencies Greater Than 20%[J]. Science,2017,358(6364):768-771. | [5] | Bush K A,Palmstrom A F,Zhengshan J Y,et al. 23.6%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells with Improved Stability[J]. Nat Energy,2017,2:17009. | [6] | Fang Y,Dong Q,Shao Y,et al. Highly Narrowband Perovskite Single-Crystal Photodetectors Enabled by Surface-Charge Recombination[J]. Nat Photonics,2015,9(10):679-686. | [7] | Zhao F,Chen D,Chang S,et al. Highly Flexible Organometal Halide Perovskite Quantum Dot Based Light-Emitting Diodes on a Silver Nanowire-Polymer Composite Electrode[J]. J Mater Chem C,2017,5(3):531-538. | [8] | Schmidt L C,Pertegaás A,Gonzaález-Carrero S,et al. Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles[J]. J Am Chem Soc,2014,136(3):850-853. | [9] | Zhu H,Fu Y,Meng F,et al. Lead Halide Perovskite Nanowire Lasers with Low Lasing Thresholds and High Quality Factors[J]. Nat Mater,2015,14:636-642. | [10] | Xing G,Mathews N,LimS S,et al. Low-temperature Solution-Processed Wavelength-Tunable Perovskites for Lasing[J]. Nat Mater,2014,13:476-480. | [11] | Shan C,Shi G.Two-Dimensional Materials for Halide Perovskite-Based Optoelectronic Devices[J]. Adv Mater,2017,29(24):1605448. | [12] | Protesescu L,Yakunin S,Bodnarchuk M I,et al. Nanocrystals of Cesium Lead Halide Perovskites(CsPbX3, X=Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut[J]. Nano Lett,2015,15(6):3692-3696. | [13] | Zhang F,Zhong H,Chen C,et al. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3(X=Br, I,Cl) Quantum Dots:Potential Alternatives for Display Technology[J]. ACS Nano,2015,9(4):4533-4542. | [14] | Zhou Q,Bai Z,Lu W,et al. In Situ Fabrication of Halide Perovskite Nanocrystal-Embedded Polymer Composite Films with Enhanced Photoluminescence for Display Backlights[J]. Adv Mater,2016,28(41):9163-9168. | [15] | JI Honglei,ZHOU Qingchao,PAN Jun,et al. Advances and Prospects in Quantum Dots Based Backlights[J]. Chinese Opt,2017,10(5):666-680(in Chinese). 季洪雷,周青超,潘俊,等. 量子点液晶显示背光技术[J]. 中国光学,2017,10(5):666-680. | [16] | Huang S,Li Z,Kong L,et al. Enhancing the Stability of CH3NH3PbBr3 Quantum Dots by Embedding in Silica Spheres Derived from Tetramethyl Orthosilicate in “Waterless” Toluene[J]. J Am Chem Soc,2016,138(18):5749-5752. | [17] | Li Z,Kong L,Huang S,et al. Highly Luminescent and Ultra-stable CsPbBr3 Pervoskite Quantum Dots-Silica/Alumina Monolith[J]. Angew Chem Int Ed,2017,56(28):8134-8138. | [18] | Wang N,Cheng L,Ge R,et al. Perovskite Light-Emitting Diodes Based on Solution-Processed Self-Organized Multiple Quantum Wells[J]. Nat Photonics,2016,10(11):699-704. | [19] | Li J,Xu L,Wang T,et al. 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control[J]. Adv Mater,2017,29(5):1603885. | [20] | Zhang L,Yang X,Jiang Q,et al. Ultra-bright and Highly Efficient Inorganic Based Perovskite Light-Emitting Diodes[J]. Nat Commun,2017,8:15640. | [21] | Si J,Liu Y,He Z,et al. Efficient and High-Color-Purity Light-Emitting Diodes Based on In Situ Grown Films of CsPbX3(X=Br,I) Nanoplates with Controlled Thicknesses[J]. ACS Nano,2017,11(11):11100-11107. | [22] | Bekensterin Y,Koscher B A,Eaton S W,et al. Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies[J]. J Am Chem Soc,2015,137(51):16008-160011 | [23] | Ha S T,Liu X,Zhang Q,et al. Synthesis of Organic-Inorganic Lead Halide Perovskite Nanoplatelets:Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices[J]. Adv Opt Mater,2014,2(9):838-844. | [24] | Niu Y,Zhang F,Bai Z,et al. Aggregation-Induced Emission Features of Organometal Halide Perovskites and Their Fluorescence Probe Applications[J]. Adv Opt Mater,2015,3(1):112-119. | [25] | Tyagi P,Arveson S M,Tisdale W A.Colloidal Organohalide Perovskite Nanoplatelets Exhibiting Quantum Confinement[J]. J Phys Chem Lett,2015,6(10):1911-1916. | [26] | Sichert J A,Tong Y,Mutz N,et al. Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets[J]. Nano Lett,2015,15(10):6521-6527. | [27] | Dou L,Wong A B,Yu Y,et al. Atomically Thin Two-Dimensional Organic-Inorganic Hybrid Perovskites[J]. Science,2015,349(6255):1518-1521. | [28] | Liu J,Xue Y,Wang Z,et al. Two-dimensional CH3NH3PbI3 Perovskite:Synthesis and Optoelectronic Application[J]. ACS Nano,2016,10(3):3536-3542. | [29] | Weidman M C,Seitz M,Stranks S D,et al. Highly Tunable Colloidal Perovskite Nanoplatelets Through Variable Cation, Metal, and Halide Composition[J]. ACS Nano,2016,10(8):7830-7839. | [30] | Yuan Z,Shu Y,Xin Y,et al. Highly Luminescent Nanoscale Quasi-2D Layered Lead Bromide Perovskites with Tunable Emissions[J]. Chem Commun,2016,52(20):3887-3890. | [31] | Sun S,Yuan D,Xu Y,et al. Ligand-mediated Synthesis of Shape-Controlled Cesium Lead Halide Perovskite Nanocrystals via Reprecipitation Process at Room Temperature[J]. ACS Nano,2016,10(3):3648-3657. | [32] | Wang K H,Wu L,Li L,et al. Large-Scale Synthesis of Highly Luminescent Perovskite-Related CsPb2Br5 Nanoplatelets and Their Fast Anion Exchange[J]. Angew Chem Int Ed,2016,55(29):8328-8332. | [33] | Shamsi J,Dang Z,Bianchini P,et al. Colloidal Synthesis of Quantum Confined Single Crystal CsPbBr3 Nanosheets with Lateral Size Control Up to the Micrometer Range[J]. J Am Chem Soc,2016,138(23):7240-7243. | [34] | Akkerman Q A,Motti S G,Kandada A R S,et al. Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control[J]. J Am Chem Soc,2016,138(3):1010-1016. | [35] | Huo C,Cai B,Yuan Z,et al. Two-Dimensional Metal Halide Perovskites:Theory, Synthesis, and Optoelectronics[J]. Small Methods,2017,1(3):1600018. | [36] | Weidman M C,Goodman A J,Tisdale W A. Colloidal Halide Perovskite Nanoplatelets:An Exciting New Class of Semiconductor Nanomaterials[J]. Chem Mater,2017,29(12)L5019-5030. | [37] | Dou L.Emerging Two-Dimensional Halide Perovskite Nanomaterials[J]. J Mater Chem C,2017,5(43):11165-11173. | [38] | Pan A,He B,Fan X,et al. Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr3 Perovskite Nanocrystals:The Role of Organic Acid, Base, and Cesium Precursors[J]. ACS Nano,2016,10(8):7943-7954. | [39] | Tang Z,Kotov N A,Giersig M.Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires[J]. Science,2002,297(5579):237-240. | [40] | Tang Z,Zhang Z,Wang Y,et al. Self-assembly of CdTe Nanocrystals into Free-Floating Sheets[J]. Science,2006,314(5797):274-278. | [41] | Huang H,Zhao F,Liu L,et al. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots:An Alternative Route Toward Efficient Light-Emitting Diodes[J]. ACS Appl Mater Interfaces,2015,7(51):28128-28133. | [42] | Liu L,Huang S,Pan L,et al. Colloidal Synthesis of CH3NH3PbBr3 Nanoplatelets with Polarized Emission Through Self-Organization[J]. Angew Chem Int Ed,2017,56(7):1780-1783. | [43] | Hintermayr V A,Richter A F,Ehrat F,et al. Tuning the Optical Properties of Perovskite Nanoplatelets Through Composition and Thickness by Ligand-Assisted Exfoliation[J]. Adv Mater,2016,28(43):9478-9485. | [44] | Tong Y,Ehrat F,Vanderlinden W,et al. Dilution-Induced Formation of Hybrid Perovskite Nanoplatelets[J]. ACS Nano,2016,10(12):10936-10944. | [45] | Mir W J,Jagadeeswarao M,Das S,et al. Colloidal Mn-Doped Cesium Lead Halide Perovskite Nanoplatelets[J]. ACS Energy Lett,2017,2(3):537-543. | [46] | Yang S,Niu W,Wang A L,et al. Ultrathin Two-Dimensional Organic-Inorganic Hybrid Perovskite Nanosheets with Bright, Tunable Photoluminescence and High Stability[J]. Angew Chem Int Edn,2017,56(15):4252-4255. | [47] | Kumar S,Jagielski J,Yakunin S,et al. Efficient Blue Electroluminescence Using Quantum-Confined Two-Dimensional Perovskites[J]. ACS Nano,2016,10(10):9720-9729. | [48] | Congreve D N,Weidman M C,Seitz M,et al. Tunable Light-Emitting Diodes Utilizing Quantum-Confined Layered Perovskite Emitters[J]. ACS Photonics,2017,4:476-481. | [49] | Kumar S,Jagielski J,Kallikounis N,et al. Ultrapure Green Light-Emitting Diodes Using Two-Dimensional Formamidinium Perovskites:Achieving Recommendation 2020 Color Coordinates[J]. Nano Lett,2017,17(9):5277-5284. | [50] | Hu X,Zhou H,Jiang Z,et al. Direct Vapor Growth of Perovskite CsPbBr3 Nanoplate Electroluminescence Devices[J]. ACS Nano,2017,11(10):9869-9876. | [51] | Bohn B J,Simon T,Gramlich M,et al. Dephasing and Quantum Beating of Excitons in Methyl Ammonium Lead Iodide Perovskite Nanoplatelets[J]. ACS Photonics,2018,DOI: | [52] | Li P,Chen Y,Yang T,et al. Two-Dimensional CH3NH3PbI3 Perovskite Nanosheets for Ultrafast Pulsed Fiber Lasers[J]. ACS Appl Mater Interfaces,2017,9(14):12759-1276. | [53] | Yaffe O,Chernikov A,Norman Z M,et al. Excitons in Utrathin Organic-Inorganic Perovskite Crystals[J]. Phys Rev B,2015,92(4):045414. |
|