[1] | Borup R,Meyers J,Pivovar B,et al.Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation[J]. Chem Rev,2007,107(10):3904-3951. | [2] | Amphlett J,Evans M,Jones R,et al.Hydrogen Production by the Catalytic Steam Reforming of Methanol Part 1:The Thermodynamics[J]. Can J Chem Eng,1981,59(6):720-727. | [3] | Steinberg M,Cheng H C.Modern and Prospective Technologies for Hydrogen Production from Fossil Fuels[J]. Int J Hydrogen Energ,1989,14(11):797-820. | [4] | Bard A J,Fox M A.Artificial Photosynthesis:Solar Splitting of Water to Hydrogen and Oxygen[J]. Acc Chem Res,1995,28(3):141-145. | [5] | Dresselhaus M S,Thomas I L.Alternative Energy Technologies[J]. Nature,2001,414(6861):332-337. | [6] | Turner J A.Sustainable Hydrogen Production[J]. Science,2004,305(5686):972-974. | [7] | Subbaraman R,Tripkovic D,Strmcnik D,et al.Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces[J]. Science,2011,334(6060):1256-1260. | [8] | Walter M G,Warren E L,McKone J R,et al. Solar Water Splitting Cells[J]. Chem Rev,2010,110(11):6446-6473. | [9] | Cook T R,Dogutan D K,Reece S Y,et al.Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds[J]. Chem Rev,2010,110(11):6474-6502. | [10] | Yin H,Zhao S,Zhao K,et al.Ultrathin Platinum Nanowires Grown on Single-Layered Nickel Hydroxide with High Hydrogen Evolution Activity[J]. Nat Commun,2015,6:6430. | [11] | Conway B E,Tilak B V.Interfacial Processes Involving Electrocatalytic Evolution and Oxidation of H2, and the Role of Chemisorbed H[J]. Electrochim Acta,2002,47(22/23):3571-3594. | [12] | McKone J R,Marinescu S C,Brunschwig B S,et al. Earth-Abundant Hydrogen Evolution Electrocatalysts[J]. Chem Sci,2014,5(3):865-878. | [13] | Zheng Y,Jiao Y,Zhu Y,et al.Hydrogen Evolution by a Metal-Free Electrocatalyst[J]. Nat Commun,2014,5:3783. | [14] | Hu X,Cossairt B M,Brunschwig B S,et al.Electrocatalytic Hydrogen Evolution by Cobalt Difluoroboryl-Diglyoximate Complexes[J]. Chem Commun,2005,0(37):4723-4725. | [15] | Dempsey J L,Brunschwig B S,Winkler J R,et al.Hydrogen Evolution Catalyzed by Cobaloximes[J]. Acc Chem Res,2009,42(12):1995-2004. | [16] | McNamara W R,Han Z,Alperin P J,et al. A Cobalt-Dithiolene Complex for the Photocatalytic and Electrocatalytic Reduction of Protons[J]. J Am Chem Soc,2011,133(39):15368-15371. | [17] | Barnett S M,Goldberg K I,Mayer J M.A Soluble Copper-Bipyridine Water-Oxidation Electrocatalyst[J]. Nat Chem,2012,4(6):498-502. | [18] | McNamara W R,Han Z,Yin J C,et al. Cobalt-Dithiolene Complexes for the Photocatalytic and Electrocatalytic Reduction of Protons in Aqueous Solutions[J]. Proc Natl Acad Sci USA,2012,109(39):15594-15599. | [19] | Jahan M,Liu Z,Loh K P.A Graphene Oxide and Copper-Centered Metal Organic Framework Composite as a Tri-Functional Catalyst for HER, OER, and ORR[J]. Adv Funct Mater,2013,23(43):5363-5372. | [20] | Fang M,Engelhard M H,Zhu Z,et al.Electrodeposition from Acidic Solutions of Nickel Bis(Benzenedithiolate) Produces a Hydrogen-Evolving Ni-S Film on Glassy Carbon[J]. ACS Catal,2014,4(1):90-98. | [21] | Letko C S,Panetier J A,Head-Gordon M,et al.Mechanism of the Electrocatalytic Reduction of Protons with Diaryldithiolene Cobalt Complexes[J]. J Am Chem Soc,2014,136(26):9364-9376. | [22] | Zhang P,Wang M,Yang Y,et al.A Molecular Copper Catalyst for Electrochemical Water Reduction with a Large Hydrogen-Generation Rate Constant in Aqueous Solution[J]. Angew Chem Int Edit,2014,53(50):13803-13807. | [23] | Clough A J,Yoo J W,Mecklenburg M H,et al.Two-Dimensional Metal-Organic Surfaces for Efficient Hydrogen Evolution from Water[J]. J Am Chem Soc,2015,137(1):118-121. | [24] | Dong R,Pfeffermann M,Liang H,et al.Large-Area, Free-Standing, Two-Dimensional Supramolecular Polymer Single-Layer Sheets for Highly Efficient Electrocatalytic Hydrogen Evolution[J]. Angew Chem Int Edit,2015,54(41):12058-12063. | [25] | Downes C A,Marinescu S C.Efficient Electrochemical and Photoelectrochemical H2 Production from Water by a Cobalt Dithiolene One-Dimensional Metal-Organic Surface[J]. J Am Chem Soc,2015,137(43):13740-13743. | [26] | Downes C A,Marinescu S C.One Dimensional Metal Dithiolene(M=Ni,Fe,Zn) Coordination Polymers for the Hydrogen Evolution Reaction[J]. Dalton Trans,2016,45(48):19311-19321. | [27] | Zarkadoulas A,Field M J,Papatriantafyllopoulou C,et al.Experimental and Theoretical Insight into Electrocatalytic Hydrogen Evolution with Nickel Bis(aryldithiolene) Complexes as Catalysts[J]. Inorg Chem,2016,55(2):432-444. | [28] | Dong R,Zheng Z,Tranca D C,et al.Immobilizing Molecular Metal Dithiolene-Diamine Complexes on 2D Metal-Organic Frameworks for Electrocatalytic H2 Production[J]. Chem Eur J,2017,23(10):2255-2260. | [29] | Downes C A,Marinescu S C.Bioinspired Metal Selenolate Polymers with Tunable Mechanistic Pathways for Efficient H2 Evolution[J]. ACS Catal,2017,7(1):848-854. | [30] | Downes C A,Yoo J W,Orchanian N M,et al.H2 Evolution by a Cobalt Selenolate Electrocatalyst and Related Mechanistic Studies[J]. Chem Commun,2017,53(53):7306-7309. | [31] | Huang X,Yao H,Cui Y,et al.Conductive Copper Benzenehexathiol Coordination Polymer as a Hydrogen Evolution Catalyst[J]. ACS Appl Mater Interfaces,2017,9(46):40752-40759. | [32] | Wang L,Tranca D C,Zhang J,et al.Toward Activity Origin of Electrocatalytic Hydrogen Evolution Reaction on Carbon-Rich Crystalline Coordination Polymers[J]. Small,2017,13(37):1700783-1700790. | [33] | Coggins M K,Zhang M T,Chen Z,et al.Single-Site Copper(Ⅱ) Water Oxidation Electrocatalysis:Rate Enhancements with HPO42- as a Proton Acceptor at pH 8[J]. Angew Chem Int Edit,2014,53(45):12226-12230. | [34] | Nam N T S,Sluys M V D,Jones C W. On the Nature of the Active Species in Palladium Catalyzed Mizoroki-Heck and Suzuki-Miyaura Couplings-Homogeneous or Heterogeneous Catalysis, a Critical Review[J]. Adv Synth Catal,2006,348(6):609-679. | [35] | Song L C,Yang Z Y,Bian H Z,et al.Diiron Oxadithiolate Type Models for the Active Site of Iron-Only Hydrogenases and Biomimetic Hydrogen Evolution Catalyzed by Fe2(SCH2OCH2S)(CO)6[J]. Organometallics,2005,24(25):6126-6135. | [36] | Costentin C,Sav ant J M. Multielectron, Multistep Molecular Catalysis of Electrochemical Reactions: Benchmarking of Homogeneous Catalysts[J]. ChemElectroChem,2014,1(7):1226-1236. | [37] | Wiedner E S,Brown H J,Helm M L.Kinetic Analysis of Competitive Electrocatalytic Pathways:New Insights into Hydrogen Production with Nickel Electrocatalysts[J]. J Am Chem Soc,2016,138(2):604-616. | [38] | Zheng Y,Jiao Y,Jaroniec M,et al.Advancing the Electrochemistry of the Hydrogen-Evolution Reaction Through Combining Experiment and Theory[J]. Angew Chem Int Edit,2015,54(1):52-65. | [39] | Nørskov J K,Bligaard T,Logadottir A,et al.Trends in the Exchange Current for Hydrogen Evolution[J]. J Electrochem Soc,2005,152(3):J23-J26. | [40] | Artero V,Fontecave M.Some General Principles for Designing Electrocatalysts with Hydrogenase Activity[J]. Coord Chem Rev,2005,249(15/16):1518-1535. | [41] | Andreiadis E S,Jacques P A,Tran P D,et al.Molecular Engineering of a Cobalt-Based Electrocatalytic Nanomaterial for H2 Evolution under Fully Aqueous Conditions[J]. Nat Chem,2013,5(1):48-53. | [42] | Baker-Hawkes M J,Billig E,Gray H B. Characterization and Electronic Structures of Metal Complexes Containing Benzene-1,2-dithiolate and Related Ligands[J]. J Am Chem Soc,1966,88(21):4870-4875. | [43] | Solis B H,Hammes-Schiffer S.Computational Study of Anomalous Reduction Potentials for Hydrogen Evolution Catalyzed by Cobalt Dithiolene Complexes[J]. J Am Chem Soc,2012,134(37):15253-15256. | [44] | Tran P D,Le Goff A,Heidkamp J,et al.Noncovalent Modification of Carbon Nanotubes with Pyrene-Functionalized Nickel Complexes:Carbon Monoxide Tolerant Catalysts for Hydrogen Evolution and Uptake[J]. Angew Chem Int Edit,2011,50(6):1371-1374. | [45] | Huang X,Sheng P,Tu Z,et al.A Two-Dimensional π-d Conjugated Coordination Polymer with Extremely High Electrical Conductivity and Ambipolar Transport Behaviour[J]. Nat Commun,2015,6:7408. | [46] | Jaramillo T F,Jørgensen K P,Bonde J,et al.Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts[J]. Science,2007,317(5834):100-102. | [47] | Seh Z W,Kibsgaard J,Dickens C F,et al.Combining Theory and Experiment in Electrocatalysis:Insights into Materials Design[J]. Science,2017,355(6321):146-146. |
|