| [1] |
宋天佑, 徐家宁, 程功臻, 等. 无机化学(第四版)[M]. 北京: 高等教育出版社, 2019.
|
|
SONG T Y, XU J N, CHENG G Q, et al. Inorganic chemistry (the 4th edition)[M]. Beijing: Higher Education Press, 2019.
|
| [2] |
2013-2017年教育部高等学校化学类专业教学指导委员会. 化学类专业化学理论教学建议内容[J]. 大学化学, 2016, 31(11): 11-18.
|
|
Teaching Steering Committee for Chemistry-related Majors of Higher Education Institutions, Ministry of Education (2013-2017). Suggested contents for chemical theory teaching in chemistry-related majors[J]. Univ Chem, 2016, 31(11): 11-18.
|
| [3] |
余凡, 王亮, 李宝. “自旋交叉”科研内容融入晶体场理论本科教学的实践[J]. 大学化学, 2020, 35(8): 111-114.
|
|
YU F, WANG L, LI B. Introduction of spin crossover into the undergraduate teaching of crystal field theory[J]. Univ Chem, 2020, 35(8): 111-114.
|
| [4] |
JUSTIN M P, JAMES P B, DAVID L, et al. Tierney, combining novel visualizations and synthesis to explore structure-property relationships using cobalt complexes[J]. J Chem Educ, 2017, 94: 1952-1959.
|
| [5] |
杜姣姣, 李芬, 杨国鑫, 等. 显色配合物合成: 从晶体场理论到实验室实践的贯通[J]. 化学教育, 2024, 45(14): 40-46.
|
|
DU J J, LI F, YANG G X, et al. Synthesis of color complexes: from crystal field theory to laboratory practice[J]. Chin J Chem Edu, 2024, 45(14): 40-46.
|
| [6] |
张可微扬, 范梓涵, 肖力源, 等. 揭秘晶体场理论-镍大环配合物的制备、表征与性能测定[J]. 大学化学, 2024, 39(5): 163-171.
|
|
ZHANG K W Y, FAN Z H, XIAO L Y, et al. Unveiling crystal field theory: preparation, characterization, and performance assessment of nickel macrocyclic complexes[J]. Univ Chem, 2024, 39(5): 163-171.
|
| [7] |
范勇, 屈学俭, 徐佳宁. 基础化学实验(第二版)[M]. 北京: 高等教育出版社, 2015.
|
|
FAN Y, QU X J, XU J N. Fundamental chemistry experiments (the 2nd edition)[M]. Beijing: Higher Education Press, 2015.
|
| [8] |
齐继, 朱建安, 张延旭, 等. 可逆SCSC转变中铜(Ⅱ)配合物的可视变色:结构对颜色的影响[J]. 大学化学, 2024, 39(3): 43-57.
|
|
QI J, ZHU J A, ZHANG Y X, et al. Visible color change of copper(Ⅱ) complexes in reversible SCSC transformation: the effect of structure on color[J]. Univ Chem, 2024, 39(3): 43-57.
|
| [9] |
罗文斌, 晁自胜, 范金成. 科教融合理念下储能高分子材料教学探索与实践[J]. 应用化学, 2024, 41(10): 1519-1524.
|
|
LUO W B, CHAO Z S, FAN J C. Exploration and practice of energy storage polymer materials teaching under the concept of integrating science and education[J]. Chin J Appl Chem, 2024, 41(10): 1519-1524.
|
| [10] |
LIU H, YUAN L, QI H, et al. In-situ optical and structural insight of reversible thermochromic materials of Sm3- xBixFe5O12 (x=0, 0.1, 0.3, 0.5)[J]. Dyes Pigm, 2017, 145: 418-426.
|
| [11] |
LIU H, QI H, YUAN L, et al. Design principles for 3d electron transfer in a Ga-based garnet to enable high-performance reversible thermochromic material color maps[J]. Chem Mater, 2019, 31: 1048-1056.
|
| [12] |
SUN Y, GUO F, CHU X, et al. Uniaxial thermal expansion-induced successively reversible thermochromism in zircon-type CaCrO4[J]. Inorg Chem Front, 2025, 12: 3478-3489.
|
| [13] |
JIN Q Y, LIANG Y Y, ZHANG Z H, et al. Colossal negative thermal expansion in a cucurbit [8]uril-enabled uranyl-organic polythreading framework via thermally induced relaxation[J]. Chem Sci, 2023, 14: 6330.
|
| [14] |
CHRISTIAN S, CHRISTIAN R, CELIA T S, et al. Room temperature magnetic rare-earth iron garnet thin films with ordered mesoporous structure[J]. Chem Mater, 2013, 25: 2527-2537.
|
| [15] |
WANG H, LUO S, ZHANG M, et al. Roles of oxygen vacancy and O x - in oxidation reactions over CeO2 and Ag/CeO2 nanorod model catalysts[J]. J Catal, 2018, 368: 365-378.
|
| [16] |
SERIER-BRAULT H, THIBAULT L, LEGRAIN M, et al. Thermochromism in yttrium iron garnet compounds[J]. Inorg Chem, 2014, 53(23): 12378-12383.
|