Chinese Journal of Applied Chemistry ›› 2024, Vol. 41 ›› Issue (5): 668-676.DOI: 10.19894/j.issn.1000-0518.230298
• Full Papers • Previous Articles Next Articles
Biao HU1,2, Hui WANG1,2(), Zhen-Ying ZHANG2(), Dao-Rong XUE3, Qiang LIU3
Received:
2023-09-26
Accepted:
2024-03-13
Published:
2024-05-01
Online:
2024-06-03
Contact:
Hui WANG,Zhen-Ying ZHANG
About author:
zhangzhenying@ncst.edu.cnSupported by:
CLC Number:
Biao HU, Hui WANG, Zhen-Ying ZHANG, Dao-Rong XUE, Qiang LIU. Dehydration Process of Ammonium Aluminum Sulfate Dodecahydrate and Its Thermodynamics and Kinetics Research[J]. Chinese Journal of Applied Chemistry, 2024, 41(5): 668-676.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.230298
Temperture/℃ | T/K | ΔG1/(J·mol-1) | aw | p | pw/kPa | |
---|---|---|---|---|---|---|
50 | 323.15 | 14 262.65 | 4.94×10-3 | 0.55 | 12.34 | 6.84 |
55 | 328.15 | 12 623.05 | 9.77×10-3 | 0.60 | 15.74 | 9.41 |
60 | 333.15 | 10 983.45 | 1.89×10-2 | 0.64 | 19.92 | 12.82 |
65 | 338.15 | 9 343.85 | 3.60×10-2 | 0.69 | 25.01 | 17.28 |
70 | 343.15 | 7 704.25 | 6.70×10-2 | 0.74 | 31.16 | 23.08 |
75 | 348.15 | 6 064.65 | 0.12 | 0.79 | 38.55 | 30.54 |
80 | 353.15 | 4 425.05 | 0.22 | 0.85 | 47.38 | 40.07 |
85 | 358.15 | 2 785.45 | 0.39 | 0.90 | 57.88 | 52.16 |
90 | 363.15 | 1 145.85 | 0.68 | 0.96 | 70.14 | 67.23 |
95 | 368.15 | -493.75 | 1.17 | 1.02 | 84.56 | 86.07 |
100 | 373.15 | -2 133.35 | 1.99 | 1.08 | 101.33 | 109.35 |
105 | 378.15 | -3 772.95 | 3.31 | 1.14 | 120.85 | 138.06 |
110 | 383.15 | -5 412.55 | 5.46 | 1.21 | 143.31 | 173.05 |
115 | 388.15 | -7 052.15 | 8.88 | 1.27 | 169.11 | 215.54 |
120 | 393.15 | -8 691.75 | 14.26 | 1.34 | 198.64 | 266.86 |
Table 1 Thermodynamic data of nine liquid water loss processes for ammonium aluminum sulfate dodecahydrate
Temperture/℃ | T/K | ΔG1/(J·mol-1) | aw | p | pw/kPa | |
---|---|---|---|---|---|---|
50 | 323.15 | 14 262.65 | 4.94×10-3 | 0.55 | 12.34 | 6.84 |
55 | 328.15 | 12 623.05 | 9.77×10-3 | 0.60 | 15.74 | 9.41 |
60 | 333.15 | 10 983.45 | 1.89×10-2 | 0.64 | 19.92 | 12.82 |
65 | 338.15 | 9 343.85 | 3.60×10-2 | 0.69 | 25.01 | 17.28 |
70 | 343.15 | 7 704.25 | 6.70×10-2 | 0.74 | 31.16 | 23.08 |
75 | 348.15 | 6 064.65 | 0.12 | 0.79 | 38.55 | 30.54 |
80 | 353.15 | 4 425.05 | 0.22 | 0.85 | 47.38 | 40.07 |
85 | 358.15 | 2 785.45 | 0.39 | 0.90 | 57.88 | 52.16 |
90 | 363.15 | 1 145.85 | 0.68 | 0.96 | 70.14 | 67.23 |
95 | 368.15 | -493.75 | 1.17 | 1.02 | 84.56 | 86.07 |
100 | 373.15 | -2 133.35 | 1.99 | 1.08 | 101.33 | 109.35 |
105 | 378.15 | -3 772.95 | 3.31 | 1.14 | 120.85 | 138.06 |
110 | 383.15 | -5 412.55 | 5.46 | 1.21 | 143.31 | 173.05 |
115 | 388.15 | -7 052.15 | 8.88 | 1.27 | 169.11 | 215.54 |
120 | 393.15 | -8 691.75 | 14.26 | 1.34 | 198.64 | 266.86 |
Temperture/℃ | T/K | ΔG2/(J·mol-1) | aw | pw/kPa | |
---|---|---|---|---|---|
50 | 323.15 | 50 353.66 | 7.23×10-9 | 0.12 | 12.62 |
55 | 328.15 | 45 003.91 | 6.84×10-8 | 0.16 | 16.20 |
60 | 333.15 | 39 654.16 | 6.04×10-7 | 0.20 | 20.64 |
65 | 338.15 | 34 304.41 | 5.01×10-6 | 0.26 | 26.11 |
70 | 343.15 | 28 954.66 | 3.90×10-5 | 0.32 | 32.80 |
75 | 348.15 | 23 604.91 | 2.87×10-4 | 0.40 | 40.93 |
80 | 353.15 | 18 255.16 | 1.99×10-3 | 0.50 | 50.77 |
85 | 358.15 | 12 905.41 | 1.31×10-2 | 0.62 | 62.58 |
90 | 363.15 | 7 555.66 | 8.17×10-2 | 0.76 | 76.71 |
95 | 368.15 | 2 205.91 | 0.49 | 0.92 | 93.50 |
100 | 373.15 | -3 143.84 | 2.75 | 1.12 | 113.37 |
105 | 378.15 | -8 493.59 | 14.87 | 1.35 | 136.76 |
110 | 383.15 | -13 843.34 | 76.95 | 1.62 | 164.17 |
115 | 388.15 | -19 193.09 | 381.82 | 1.94 | 196.15 |
120 | 393.15 | -24 542.84 | 1 818.92 | 2.30 | 233.30 |
Table 2 Thermodynamic data of nine gaseous water processes for ammonium aluminum sulfate dodecahydrate loss
Temperture/℃ | T/K | ΔG2/(J·mol-1) | aw | pw/kPa | |
---|---|---|---|---|---|
50 | 323.15 | 50 353.66 | 7.23×10-9 | 0.12 | 12.62 |
55 | 328.15 | 45 003.91 | 6.84×10-8 | 0.16 | 16.20 |
60 | 333.15 | 39 654.16 | 6.04×10-7 | 0.20 | 20.64 |
65 | 338.15 | 34 304.41 | 5.01×10-6 | 0.26 | 26.11 |
70 | 343.15 | 28 954.66 | 3.90×10-5 | 0.32 | 32.80 |
75 | 348.15 | 23 604.91 | 2.87×10-4 | 0.40 | 40.93 |
80 | 353.15 | 18 255.16 | 1.99×10-3 | 0.50 | 50.77 |
85 | 358.15 | 12 905.41 | 1.31×10-2 | 0.62 | 62.58 |
90 | 363.15 | 7 555.66 | 8.17×10-2 | 0.76 | 76.71 |
95 | 368.15 | 2 205.91 | 0.49 | 0.92 | 93.50 |
100 | 373.15 | -3 143.84 | 2.75 | 1.12 | 113.37 |
105 | 378.15 | -8 493.59 | 14.87 | 1.35 | 136.76 |
110 | 383.15 | -13 843.34 | 76.95 | 1.62 | 164.17 |
115 | 388.15 | -19 193.09 | 381.82 | 1.94 | 196.15 |
120 | 393.15 | -24 542.84 | 1 818.92 | 2.30 | 233.30 |
Temperture/℃ | T/K | ΔG4/(J·mol-1) | aw | pw/MPa | |
---|---|---|---|---|---|
120 | 393.15 | -58 894.12 | 6.66×107 | 405.36 | 4.11×101 |
125 | 398.15 | -61 810.82 | 1.28×108 | 504.24 | 5.11×101 |
130 | 403.15 | -64 727.52 | 2.43×108 | 623.86 | 6.32×101 |
135 | 408.15 | -67 644.22 | 4.53×108 | 767.83 | 7.78×101 |
140 | 413.15 | -70 560.92 | 8.31×108 | 940.30 | 9.53×101 |
145 | 418.15 | -73 477.62 | 1.50×109 | 1 145.94 | 1.16×102 |
150 | 423.15 | -76 394.32 | 2.69×109 | 1 390.04 | 1.41×102 |
160 | 433.15 | -82 227.72 | 8.22×109 | 2 018.14 | 2.04×102 |
170 | 443.15 | -88 061.12 | 2.39×1010 | 2 881.15 | 2.92×102 |
180 | 453.15 | -93 894.52 | 6.64×1010 | 4 049.08 | 4.10×102 |
190 | 463.15 | -99 727.92 | 1.76×1011 | 5 607.44 | 5.68×102 |
200 | 473.15 | -105 561.32 | 4.49×1011 | 7 659.43 | 7.76×102 |
210 | 483.15 | -111 394.72 | 1.10×1012 | 10 328.12 | 1.05×103 |
220 | 493.15 | -117 228.12 | 2.60×1012 | 13 758.83 | 1.39×103 |
230 | 503.15 | -123 061.52 | 5.95×1012 | 18 121.34 | 1.84×103 |
240 | 513.15 | -12 8894.92 | 1.32×1013 | 23 612.25 | 2.39×103 |
250 | 523.15 | -134 728.32 | 2.83×1013 | 30 457.20 | 3.09×103 |
Table 3 Thermodynamic data of ammonium aluminum sulfate dodecahydrate losing three gaseous water processes
Temperture/℃ | T/K | ΔG4/(J·mol-1) | aw | pw/MPa | |
---|---|---|---|---|---|
120 | 393.15 | -58 894.12 | 6.66×107 | 405.36 | 4.11×101 |
125 | 398.15 | -61 810.82 | 1.28×108 | 504.24 | 5.11×101 |
130 | 403.15 | -64 727.52 | 2.43×108 | 623.86 | 6.32×101 |
135 | 408.15 | -67 644.22 | 4.53×108 | 767.83 | 7.78×101 |
140 | 413.15 | -70 560.92 | 8.31×108 | 940.30 | 9.53×101 |
145 | 418.15 | -73 477.62 | 1.50×109 | 1 145.94 | 1.16×102 |
150 | 423.15 | -76 394.32 | 2.69×109 | 1 390.04 | 1.41×102 |
160 | 433.15 | -82 227.72 | 8.22×109 | 2 018.14 | 2.04×102 |
170 | 443.15 | -88 061.12 | 2.39×1010 | 2 881.15 | 2.92×102 |
180 | 453.15 | -93 894.52 | 6.64×1010 | 4 049.08 | 4.10×102 |
190 | 463.15 | -99 727.92 | 1.76×1011 | 5 607.44 | 5.68×102 |
200 | 473.15 | -105 561.32 | 4.49×1011 | 7 659.43 | 7.76×102 |
210 | 483.15 | -111 394.72 | 1.10×1012 | 10 328.12 | 1.05×103 |
220 | 493.15 | -117 228.12 | 2.60×1012 | 13 758.83 | 1.39×103 |
230 | 503.15 | -123 061.52 | 5.95×1012 | 18 121.34 | 1.84×103 |
240 | 513.15 | -12 8894.92 | 1.32×1013 | 23 612.25 | 2.39×103 |
250 | 523.15 | -134 728.32 | 2.83×1013 | 30 457.20 | 3.09×103 |
Heating rate β/(K·min-1) | Removing 9 crystal water | Removing the remaining 3 crystal water | |
---|---|---|---|
Tp/℃ | The first Tp/℃ | The second Tp/℃ | |
1 | 70.20 | / | / |
2 | 78.26 | / | 194.80 |
5 | 87.26 | / | 213.32 |
10 | 94.74 | 138.63 | 215.39 |
Table 4 Peak temperature of ammonium aluminum sulfate dodecahydrate losing 9 water at different heating rates
Heating rate β/(K·min-1) | Removing 9 crystal water | Removing the remaining 3 crystal water | |
---|---|---|---|
Tp/℃ | The first Tp/℃ | The second Tp/℃ | |
1 | 70.20 | / | / |
2 | 78.26 | / | 194.80 |
5 | 87.26 | / | 213.32 |
10 | 94.74 | 138.63 | 215.39 |
Fig.3 Kissinger equation: (A) Ammonium aluminum sulfate dodecahydrate loses nine water peak; (B) Ammonium aluminum sulfate dodecahydrate loses three water peak
Dehydration process | R2 | Ek/(kJ·mol-1) | ln Ak/s-1 |
---|---|---|---|
Removing 9 crystal water | 0.997 8 | 93.53 | 30.37 |
Removing the remaining 3 crystal water | 0.864 1 | 118.70 | 28.44 |
Table 5 The activation energy and pre-exponential factor of ammonium aluminum sulfate dodecahydrate
Dehydration process | R2 | Ek/(kJ·mol-1) | ln Ak/s-1 |
---|---|---|---|
Removing 9 crystal water | 0.997 8 | 93.53 | 30.37 |
Removing the remaining 3 crystal water | 0.864 1 | 118.70 | 28.44 |
1 | 国家发展改革委、国家能源局:印发《“十四五”新型储能发展实施方案》[J]. 节能与环保, 2022(3): 6. |
National development and reform commission and national energy administration: issuing the implementation plan for the development of new energy storage in the 14th five year plan[J]. Energy Conserv Environ Prot, 2022(3): 6. | |
2 | 孟令然, 郭立江, 李晓禹, 等. 水合盐相变储能材料的研究进展[J]. 储能科学与技术, 2017, 6(4): 623-632. |
MENG L R, GUO L J, LI X Y, et al. Salt hydrate based phase change materials for thermal energy storage-a review[J]. Energy Storage Sci Technol, 2017, 6(4): 623-632. | |
3 | DIXIT P, REDDY V J, PARVATE S, et al. Salt hydrate phase change materials: current state of art and the road ahead[J]. J Energy Storage, 2022, 51: 104360. |
4 | WANG H, GUO L J, LIU K Q, et al. Investigation of magnesium nitrate hexahydrate based phase change materials containing nanoparticles for thermal energy storage[J]. Mater Res Express, 2019, 6: 105512. |
5 | 孙世平, 李翔, 申月, 等. 无机水合盐相变储能材料研究进展[J]. 化工新型材料, 2023, 51(4): 26-31. |
SUN S P, LI X, SHEN Y, et al. Research progress of inorganic hydrated salt phase change energy storage materials[J]. New Chem Mater, 2023, 51(4): 26-31. | |
6 | 肖力光, 王静维. 无机水合盐相变材料在建筑节能领域的应用[J]. 化工新型材料, 2021, 49(9): 226-229. |
XIAO L G, WANG J W. Application research on inorganic hydrated salt phase change material in the field of building energy saving[J]. New Chem Mater, 2021, 49(9): 226-229. | |
7 | WANG H, CI E D, LI X Q, et al. Mg(NO3)2·6H2O-LiNO3 eutectic/expanded graphite composite phase change material for thermal energy storage applications[J]. J Energy Storage, 2022, 48: 103979. |
8 | WANG H, ZHANG Y, CI E D, et al. Preparation and characterization of a solar-driven sodium acetate trihydrate composite phase change material with Ti4O7 particles[J]. Sol Energ Mat Sol C, 2022, 238: 111591. |
9 | DONKERS P A J, SÖGÜTOGLU L C, HUININK H P, et al. A review of salt hydrates for seasonal heat storage in domestic applications[J]. Appl Energy, 2017, 199: 45-68. |
10 | 冯海燕, 刘晓地, 葛艳蕊, 等. 水合盐的几种脱水过程探讨[J]. 无机化学学报, 2000, 16(1): 89-96. |
FENG H Y, LIU X D, GE Y R, et al, A Study on the dehydration of some hydrated salts[J]. Chin J Inorg Chem, 2000, 16(1): 89-96. | |
11 | 冯琳, 杨淑琼. 七水硫酸锌脱水机理热力学初探[J]. 重庆师范大学学报(自然科学版), 2006(1): 55-57. |
FENG L, YANG S Q. The study of the dehydrating mechanism of seven water zinc sulfate[J]. J Chongqing Norm Univ (Nat Sci Ed), 2006(1): 55-57. | |
12 | YAN T S, LI T X, XU J X, et al. Understanding the transition process of phase change and dehydration reaction of salt hydrate for thermal energy storage[J]. Appl Therm Eng, 2020, 166: 114655. |
13 | 宋力, 洪建和, 罗仕婷, 等. NH4Al(SO4)2·12H2O的热分解动力学研究[J]. 化学研究与应用, 2010, 22(6): 710-715. |
SONG L, HONG J H, LUO S T, et al. Thermal decomposition kinetics of NH4Al(SO4)2·12H2O[J]. Chem Res Appl, 2010, 22(6): 710-715. | |
14 | 韩国斌. 十二水硫酸铝铵/SiO2定形性相变储能材料对混凝土结构抗火性能的影响研究[D]. 成都: 西南交通大学, 2014. |
HAN G B. Research on the impacts of NH4Al(SO4)2·12H2O/SiO2, form stable phase changeing energy storage material on the fire resistance of concrete structures[D]. Chengdu: Southwest Jiaotong University, 2014. | |
15 | 樊占胜, 鹿院卫, 王元媛, 等. 十二水硫酸铝铵新型复合相变材料及其性能研究[J]. 热力发电, 2023, 52(2): 32-38. |
FAN Z S, LU Y W, WANG Y Y, et al. Study on aluminum ammonium sulfate dodecahydrate composite phase change material and its properties[J]. Therm Power Gener, 2023, 52(2): 32-38. | |
16 | ZHOU X C, ZHANG X L, ZHENG Q Y. Aluminum ammonium sulfate dodecahydrate with multiple additives as composite phase change materials for thermal energy storage[J]. Energy Fuel, 2020(34): 7607-7615. |
17 | KENISARIN M, MAHKAMOV K. Salt hydrates as latent heat storage materials: thermophysical properties and costs[J]. Sol Energ Mat Sol C, 2016(145): 255-286. |
18 | SUN W C, ZHOU Y, FENG J X, et al. Compounding MgCl2·6H2O with NH4Al(SO4)2·12H2O or KAl(SO4)2·12H2O to obtain binary hydrated salts as high performance phase change materials[J]. Molecules, 2019, 24(2): 363. |
19 | 李梅君, 陈娅如. 普通化学[M]. 第二版. 上海: 华东理工大学出版社, 2013. |
LI M J, CHEN Y R. General Chemistry[M]. 2nd ed. Shanghai: East China University of Science and Technology Press, 2013. | |
20 | STEIGER M, ASMUSSEN S. Crystallization of sodium sulfate phases in porous materials: the phase diagram Na2SO4-H2O and the generation of stress[J]. Geochim Cosmochim Acta, 2008, 72(17): 4291-4306. |
21 | 张寅平, 胡汉平, 孔祥冬. 相变贮能——理论和应用[M]. 合肥: 中国科学技术大学出版社, 1996. |
ZHANG Y P, HU H P, KONG X D. Phase change energy storage——theory and applications[M]. Hefei: University of Science and Technology of China Press, 1996. | |
22 | DEAN J A. 兰氏化学手册[M]. (第二版) 北京: 科学出版社, 2003. |
DEAN J A. Lange's handbook of chemisty[M]. (2nd ed) Beijing: Science Press, 2003. | |
23 | HAYNES W M. CRC handbook of chemistry and physics[M]. CRC Press, 2016. |
24 | 胡荣祖, 史启祯. 热分析动力学[M]. 北京: 科学出版社, 2008. |
HU R Z, SHI Q Z. Thermal analysis kinetics[M]. Beijing: Science Press, 2008. | |
25 | BLAINE R L, KISSINGER H E. Homer Kissinger and the Kissinger equation[J]. Thermochim Acta, 2012, 540: 1-6. |
26 | KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Anal Chem, 1957, 29(11): 1702-1706. |
27 | 阳宇, 夏勇, 王君, 等. 热重分析法对废旧电路板热解过程动力学和热力学分析[J]. 有色金属科学与工程, 2024, 15(1): 43-50. |
YANG Y, XIA Y, WANG J, et al. Kinetics and thermodynamics during pyrolysis of scrap printed circuit board by TGA[J]. Nonferrous Met Sci Eng, 2024, 15(1): 43-50. |
[1] | Tao ZHANG, Si-Ying LI, Jun-Le LI, Si-Yu SHAO, Chuan-Dong WU, Mei LING, Dong-Wei LYU, Wei WANG. Performance of Granular Lanthanum Oxycarbonate in Removing Fluorine from Water [J]. Chinese Journal of Applied Chemistry, 2024, 41(2): 297-307. |
[2] | Wan-Nian ZHANG, Fang YU, Shan-Lin ZHAO, Zhi-Qiang ZHANG, Yu-Peng HE. Progress in Molecular Dynamics and Hansen Solubility Parameters of Low Molecular Weight Gels [J]. Chinese Journal of Applied Chemistry, 2022, 39(12): 1803-1817. |
[3] | DENG Pei-Yuan, YUAN Wei, LI Chang-Kan, CHEN Long-Xin, YANG Ying-Ying. Interaction Between Preservative Benzoic Acid and Human Serum Albumin [J]. Chinese Journal of Applied Chemistry, 2021, 38(8): 1014-1021. |
[4] | WANG Yu-Ting, ZHANG Xiao-Teng, LI Xian-Jun, XIA Liang-Shu. Kinetics and Mechanism of Oxalic Acid Oxidation by Nitric Acid Catalyzed by Mn(Ⅱ) [J]. Chinese Journal of Applied Chemistry, 2021, 38(6): 685-692. |
[5] | ZHENG Dandan,ZHANG Ying. Inhibition of Scale by Environmentally Friendly Scale Inhibitor and the Interaction Simulation [J]. Chinese Journal of Applied Chemistry, 2019, 36(11): 1308-1316. |
[6] | HONG Dongyang, ZHOU Jinsong, ZHOU Qixin. Effect of Hydrogen Sulfur on the Removal of Elemental Mercury with Activated Carbon [J]. Chinese Journal of Applied Chemistry, 2019, 36(10): 1194-1201. |
[7] | YANG Kecheng, CUI Fengchao, LI Yunqi. Distribution and Dynamics of Water and Urea in Hydration Shell of Ribonuclease Sa:A Molecular Dynamics Simulation Study [J]. Chinese Journal of Applied Chemistry, 2018, 35(10): 1243-1248. |
[8] | CEN Peipei, HE Yanping, LI Feifei, CAO Liang, CHEN Xiaoyan, SONG Weiming. Microcalorimetric Study of Micrococcus Luteus Inhibition by Rare Earth Complexes with Carboxylate Ligand [J]. Chinese Journal of Applied Chemistry, 2017, 34(5): 582-589. |
[9] | GENG Aifang, ZHAI Qingzhou, LIU Heng, ZHANG Yi'nan. Adsorption of Basic Dye Brilliant Green by Biluochun Green Tea [J]. Chinese Journal of Applied Chemistry, 2017, 34(11): 1336-1342. |
[10] | LANG Wuke, TANG Yin, SUN Jing. Thermodynamics Analysis of High Concentration F--Al3+ System for Fluorine Determination [J]. Chinese Journal of Applied Chemistry, 2016, 33(7): 848-854. |
[11] | XIE Fazhi, WANG Xuechun, YANG Peipei, LI Haibin, SHENG Dandan, HU Tingting, XIE Zhiyong. Pure Ca-Al- Layered Double Hydroxides as an Efficient Sorbent for Phosphate [J]. Chinese Journal of Applied Chemistry, 2016, 33(4): 473-480. |
[12] | ZHENG Xiuping, QIAO Wenqiang, WANG Zhiyuan. Test Paper Method of Chemiluminescence Based on Three Fluorescent Compounds for the Detection of Oxalyl Chloride Vapor [J]. Chinese Journal of Applied Chemistry, 2016, 33(10): 1203-1209. |
[13] | ZHENG Xiuping, QIAO Wenqiang, WANG Zhiyuan. Test Paper Method of Chemiluminescence Based on Three Fluorescent Compounds for the Detection of Oxalyl Chloride Vapor [J]. Chinese Journal of Applied Chemistry, 2016, 33(10): 0-0. |
[14] | MA Yuqin, ZHENG Changmei, YANG Tianbo, WEI Wei, LIU Meihua, ZHENG Chunbai, DENG Pengyang, GAO Ying. Reaction Characteristics of Epoxy Resins E-51 Cured by 1-Hexyl-3-Methyl Imidazole Iron Tetrachloride Salt [J]. Chinese Journal of Applied Chemistry, 2015, 32(6): 636-640. |
[15] | CAO Du, XIA Yong, YAO Hongtao, QI Zhengjian, SUN Yu, LI Fengfu. Synthesis of Linear Oligomer of Dimethyltetrasiloxane [J]. Chinese Journal of Applied Chemistry, 2015, 32(5): 527-534. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||