Chinese Journal of Applied Chemistry ›› 2024, Vol. 41 ›› Issue (5): 616-636.DOI: 10.19894/j.issn.1000-0518.230366
• Review • Previous Articles
Dong-Yu ZHANG1,2, Chun-Li WANG1, Yong CHENG1(), Li-Min WANG1,2
Received:
2023-11-21
Accepted:
2024-03-31
Published:
2024-05-01
Online:
2024-06-03
Contact:
Yong CHENG
About author:
cyong@ciac.ac.cnSupported by:
CLC Number:
Dong-Yu ZHANG, Chun-Li WANG, Yong CHENG, Li-Min WANG. Research Progress of Antimony⁃Based Anode for Sodium/Potassium Ion Batteries: Failure Analysis and Solutions[J]. Chinese Journal of Applied Chemistry, 2024, 41(5): 616-636.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.230366
Fig.2 (A) Operando evolution of the XRD pattern recorded and the corresponding voltage profile[18]; (B) PDF and NMR-derived mechanism of (de)sodiation of antimony from the first (de) sodiation during galvanostatic cycling at a rate of C/20[19]; TOF-SIMS depth profiles through (C) 100 nm Sb and (D) the Na signal across[13]
Fig.3 (A) Crystal structure of K and the structure evolution during the potassiation process; (B) DFT calculated equilibrium voltages for the potassiation process; (C) CV curves for the Sb@CSN electrode [20]; (D) In situ XRD measurement of an Sb electrode for the first discharge and (E) formation energies of K x Sb obtained by the ionic substitution method[21]
Fig.4 (A) Contour plot of the operando XRD of Sb2S[26]; (B) Schematic drawing showing the rocket-launching-like nanoparticle growth along with phase evolution during potassiation process and corresponding (C) TEM and (D) SAED[27] images
Fig.5 (A) Synthesis of monodisperse Sb nanocrystals with TEM image and (B) rate performance and (C) cycle performance[38]; (D) Schematics of the Sb thin film coated MCL and the interfacial stress during the sodiation and (E) patterned arrays of voids are created to buffer the stress accumulation[39]
Fig.6 (A) Schematic illustration of the preparation process of the Sb@C microspheres[53]; (B) Schematic illustration of the preparation process of Sb@Void@GDY NB[56]
Fig.7 (A) Schematic illustration for the preparation of carbon-coated Sb/MXene (CSM) hybrid[68]; (B) Schematic illustration for the preparation of Sb/Na-Ti3C2T x hybrid[69]
Fig.8 (A, B, C) Synthesis, morphology, and structure analyses of the Sb(Sn)@C sample[72]; (D) Illustration of the crystal structure of Bi2S3 and Sb2S3 and (E) the synthesis procedures of (Bi,Sb)2S3 nanotubes[76]; Schematic illustration for the preparation of (F) BiSb@TCS[77] and (G) rGO@Sb-Ni framework[79]
Fig.9 (A) Schematic drawing of hollow interwoven structured Sb/TiO2; (B) Illustration of nanoconfined galvanic replacement from a Ti template to hollow Sb/Ti x intermediates, TEM images of (C) hollow structured Sb/Ti x and (D) yolk-shell Ti@Sb/Ti x and (E) XRD[80]
Fig.10 (A) Schematic illustration of the synthesis process of Sb@N,S-CNFs[91]; (B) Schematic illustration of the synthesis process of u-Sb@CNF[92]; (C) Schematic illustration of the fabrication process of SbNS-G film and (D) Typical digital photograph and (E) SEM image[95]
Fig.11 (A) Illustration of electrode/SEI evolution in ECPC (up) and EGDE-based (down) electrolytes; XPS spectra of Sb electrodes after cycling three times in (B) 1 mol/L KFSI/ECPC and (C) 1 mol/L KFSI/EGDE electrolytes[99]; (D, E) Schematic diagram of electrolyte exchange experiment[100]; (F, G) Raman spectra of electrolyte[101]
Table 1 Comparison of the modification method and Na+ storage performances for the different Sb?based materials
Table 2 Comparison of the modification method and K+ storage performances for the different Sb?based materials
1 | YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chem Rev, 2014, 114(23): 11636-11682. |
2 | SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Adv Funct Mater, 2013, 23(8): 947-958. |
3 | KUBOTA K, DAHBI M, HOSAKA T, et al. Towards K-ion and Na-ion batteries as “beyond Li-ion”[J]. Chem Rec, 2018, 18(4): 459-479. |
4 | HWANG J Y, MYUNG S T,SUN Y K. Recent progress in rechargeable potassium batteries[J]. Adv Funct Mater, 2018, 28(43): 1802938. |
5 | WANG B, ANG E H, YANG Y, et al. Post-lithium-ion battery era: recent advances in rechargeable potassium-ion batteries[J]. Chem-Eur J, 2021, 27(2): 512-536. |
6 | MA L, LV Y, WU J, et al. Recent advances in anode materials for potassium-ion batteries: a review[J]. Nano Res, 2021, 14(12): 4442-4470. |
7 | WU Y, SUN Y, TONG Y, et al. Recent advances in potassium-ion hybrid capacitors: electrode materials, storage mechanisms and performance evaluation[J]. Energy Storage Mater, 2021, 41: 108-132. |
8 | HOSAKA T, KUBOTA K, HAMEED A S, et al. Research development on K-ion batteries[J]. Chem Rev, 2020, 120(14): 6358-6466. |
9 | LIU Z, SONG T, PAIK U. Sb-based electrode materials for rechargeable batteries[J]. J Mater Chem A, 2018, 6(18): 8159-8193. |
10 | SUBRAMANYAN K,ARAVINDAN V. Stibium: a promising electrode toward building high-performance Na-ion full-cells[J]. Chem, 2019, 5(12): 3096-3126. |
11 | QI S H, DENG J W, ZHANG W C, et al. Recent advances in alloy-based anode materials for potassium ion batteries[J]. Rare Met, 2020, 39(9): 970-988. |
12 | GAO H, GUO X, WANG S, et al. Antimony-based nanomaterials for high-performance potassium-ion batteries[J]. EcoMat, 2020, 2(2): e12027. |
13 | LI Z, TAN X, LI P, et al. Coupling in situ tem and ex situ analysis to understand heterogeneous sodiation of antimony[J]. Nano Lett, 2015, 15(10): 6339-6348. |
14 | JING W T, YANG C C, JIANG Q. Recent progress on metallic Sn- and Sb-based anodes for sodium-ion batteries[J]. J Mater Chem A, 2020, 8(6): 2913-2933. |
15 | SARKAR S, ROY S, ZHAO Y, et al. Recent advances in semimetallic pnictogen (As, Sb, Bi) based anodes for sodium-ion batteries: structural design, charge storage mechanisms, key challenges and perspectives[J]. Nano Res, 2021, 14(11): 3690-3723. |
16 | LIANG S, CHENG Y J, ZHU J, et al. A chronicle review of nonsilicon (Sn, Sb, Ge)-based lithium/sodium-ion battery alloying anodes[J]. Small Methods, 2020, 4(8): 2000218. |
17 | LI Y, LAI X, QU J, et al. Research progress in regulation strategies of high-performance antimony-based anode materials for sodium ion batteries[J]. Acta Phys-Chim Sin, 2022, 38(11): 2204049-2204040. |
18 | DARWICHE A, MARINO C, SOUGRATI M T, et al. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism[J]. J Am Chem Soc, 2012, 134(51): 20805-20811. |
19 | ALLAN P K, GRIFFIN J M, DARWICHE A, et al. Tracking sodium-antimonide phase transformations in sodium-ion anodes: insights from operando pair distribution function analysis and solid-state nmr spectroscopy[J]. J Am Chem Soc, 2016, 138(7): 2352-2365. |
20 | ZHENG J, YANG Y, FAN X, et al. Extremely stable antimony-carbon composite anodes for potassium-ion batteries[J]. Energy Environ Sci, 2019, 12(2): 615-623. |
21 | KO Y N, CHOI S H, KIM H, et al. One-pot formation of Sb-carbon microspheres with graphene sheets: potassium-ion storage properties and discharge mechanisms[J]. ACS Appl Mater Interfaces, 2019, 11(31): 27973-27981. |
22 | LU Y,CHEN J. Robust self-supported anode by integrating Sb2S3 nanoparticles with S,N-codoped graphene to enhance K-storage performance[J]. Sci China Chem, 2017, 60(12): 1533-1539. |
23 | YE J, XIA G, ZHENG Z, et al. Facile controlled synthesis of coral-like nanostructured Sb2O3@Sb anode materials for high performance sodium-ion batteries[J]. Int J Hydrogen Energy, 2020, 45(16): 9969-9978. |
24 | HOU H, JING M, HUANG Z, et al. One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries[J]. ACS Appl Mater Interfaces, 2015, 7(34): 19362-19369. |
25 | SHENG B, WANG L, HUANG H, et al. Boosting potassium storage by integration advantageous of defect engineering and spatial confinement: a case study of Sb2Se3[J]. Small, 2020, 16(49): e2005272. |
26 | WANG T, SHEN D, LIU H, et al. A Sb2S3 nanoflower/MXene composite as an anode for potassium-ion batteries[J]. ACS Appl Mater Interfaces, 2020, 12(52): 57907-57915. |
27 | CHENG Y, YAO Z, ZHANG Q, et al. In situ atomic-scale observation of reversible potassium storage in Sb2S3@carbon nanowire anodes[J]. Adv Funct Mater, 2020, 30(52): 2005417. |
28 | SHIVA K, RAJENDRA H B,BHATTACHARYYA A J. Electrospun snsb crystalline nanoparticles inside porous carbon fibers as a high stability and rate capability anode for rechargeable batteries[J]. ChemPlusChem, 2015, 80(3): 516-521. |
29 | KALISVAART W P, CHAUDHARY M, BHATTACHARYA A, et al. Mixing, domains, and fast Li-ion dynamics in ternary Li-Sb-Bi battery anode alloys[J]. J Phys Chem C, 2022, 126(5): 2394-2402. |
30 | GANDI S, CHINTA S R, GHOSHAL P, et al. SnO-GeO2-Sb2O3 glass anode network mixed with different Ba2+ fractions: investigations on Na-ion storage capacity and stability[J]. J Non-cryst Solids, 2019, 506: 80-87. |
31 | KIM I T, ALLCORN E,MANTHIRAM A. High-performance MxSb-Al2O3-C (M=Fe, Ni, and Cu) nanocomposite-alloy anodes for sodium-ion batteries[J]. Energy Technol, 2013, 1(5/6): 319-326. |
32 | LU X, WANG Z, LIU K, et al. Hierarchical Sb2MoO6 microspheres for high-performance sodium-ion battery anode[J]. Energy Storage Mater, 2019, 17: 101-110. |
33 | NAGULAPATI V M, LEE J H, KIM H S, et al. Novel hybrid binder mixture tailored to enhance the electrochemical performance of SbTeBi-metallic anode for sodium ion batteries[J]. J Electroanal Chem, 2020, 865: 114160. |
34 | ZHENG X M, YOU J H, FAN J J, et al. Electrodeposited binder-free Sb/NiSb anode of sodium-ion batteries with excellent cycle stability and rate capability and new insights into its reaction mechanism by operando xrd analysis[J]. Nano Energy, 2020, 77: 105123. |
35 | YANG L, GUO L, YAN D, et al. Understanding the highly reversible potassium storage of hollow ternary (Bi-Sb)2S3@N-C nanocube[J]. ACS Nano, 2023, 17(7): 6754-6769. |
36 | YANG Y, WANG J, LIU S, et al. Nature of bismuth and antimony based phosphate nanobundles/graphene for superior potassium ion batteries[J]. Chem Eng J, 2022, 435: 134746. |
37 | XIONG P, WU J, ZHOU M, et al. Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-performance potassium-ion batteries[J]. ACS Nano, 2020, 14(1): 1018-1026. |
38 | HE M, KRAVCHYK K, WALTER M, et al. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk[J]. Nano Lett, 2014, 14(3): 1255-1262. |
39 | JIANG K, TAN X, ZHANG W, et al. Localized anisotropic stress in the sodiation of antimony anode[J]. Nano Energy, 2022, 98: 107349. |
40 | WANG X, SONG J, QU J. Antimonene: from experimental preparation to practical application[J]. Angew Chem Int Ed Engl, 2019, 58(6): 1574-1584. |
41 | GUO S, HU X, ZHOU W, et al. Mechanistic understanding of two-dimensional phosphorus, arsenic, and antimony high-capacity anodes for fast-charging lithium/sodium ion batteries[J]. J Phys Chem C, 2018, 122(51): 29559-29566. |
42 | CHANG C, CHEN W, CHEN Y, et al. Recent progress on two-dimensional materials[J]. Acta Phys-Chim Sin, 2021, 37(12): 2108017. |
43 | ZHANG S, ZHOU W, MA Y, et al. Antimonene oxides: emerging tunable direct bandgap semiconductor and novel topological insulator[J]. Nano Lett, 2017, 17(6): 3434-3440. |
44 | HONG G, ZHOU M, ZHANG R, et al. Separation of metallic and semiconducting single-walled carbon nanotube arrays by “scotch tape”[J]. Angew Chem Int Ed Engl, 2011, 50(30): 6819-6823. |
45 | TIAN W, ZHANG S, HUO C, et al. Few-layer antimonene: anisotropic expansion and reversible crystalline-phase evolution enable large-capacity and long-life Na-ion batteries[J]. ACS Nano, 2018, 12(2): 1887-1893. |
46 | YANG Y, LENG S,SHI W. Electrochemical exfoliation of porous antimonene as anode materials for sodium-ion batteries[J]. Electrochem Commun, 2021, 126: 107025. |
47 | LIU Y, TAI Z, ZHANG J, et al. Boosting potassium-ion batteries by few-layered composite anodes prepared via solution-triggered one-step shear exfoliation[J]. Nat Commun, 2018, 9(1): 3645. |
48 | HOU H, JING M, YANG Y, et al. Sodium/lithium storage behavior of antimony hollow nanospheres for rechargeable batteries[J]. ACS Appl Mater Interfaces, 2014, 6(18): 16189-16196. |
49 | ZHANG H, AN W, SONG H, et al. Synthesis of micro-sized porous antimony via vapor dealloying for high-performance Na-ion battery anode[J]. Solid State Ionics, 2020, 352: 115365. |
50 | LI M, QIU T, FOUCHER A C, et al. Impact of hierarchical nanoporous architectures on sodium storage in antimony-based sodium-ion battery anodes[J]. ACS Appl Energy Mater, 2020, 3(11): 11231-11241. |
51 | AN Y, TIAN Y, CI L, et al. Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries[J]. ACS Nano, 2018, 12(12): 12932-12940. |
52 | ZHANG X, LI F, WU P, et al. Facile fabrication of sheet-on-sheet hierarchical nanostructured Sb/C composite with boosting sodium storage[J]. J Colloid Interface Sci, 2019, 545: 200-208. |
53 | QIU S, WU X, XIAO L, et al. Antimony nanocrystals encapsulated in carbon microspheres synthesized by a facile self-catalyzing solvothermal method for high-performance sodium-ion battery anodes[J]. ACS Appl Mater Interfaces, 2016, 8(2): 1337-1343. |
54 | LIU Z, YU X Y, LOU X W, et al. Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries[J]. Energy Environ Sci, 2016, 9(7): 2314-2318. |
55 | DUAN J, ZHANG W, WU C, et al. Self-wrapped Sb/C nanocomposite as anode material for high-performance sodium-ion batteries[J]. Nano Energy, 2015, 16: 479-487. |
56 | LIU Y, QING Y, ZHOU B, et al. Yolk-shell Sb@void@graphdiyne nanoboxes for high-rate and long cycle life sodium-ion batteries[J]. ACS Nano, 2023, 17(3): 2431-2439. |
57 | JI F, LIU T, LI Y, et al. Ball-milling strategy for fast and stable potassium-ion storage in antimony-carbon composite anodes[J]. ChemElectroChem, 2020, 7(22): 4587-4593. |
58 | HE X D, LIU Z H, LIAO J Y, et al. A three-dimensional macroporous antimony@carbon composite as a high-performance anode material for potassium-ion batteries[J]. J Mater Chem A, 2019, 7(16): 9629-9637. |
59 | YI Z, FANG D, ZHANG W, et al. Revealing quasi-1d volume expansion in Na-/K-ion battery anodes: a case study of Sb2O3 microbelts[J]. CCS Chem, 2021, 3(5): 1306-1315. |
60 | XIONG X, WANG G, LIN Y, et al. Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets[J]. ACS Nano, 2016, 10(12): 10953-10959. |
61 | WANG S, XIONG P, GUO X, et al. A stable conversion and alloying anode for potassium-ion batteries: a combined strategy of encapsulation and confinement[J]. Adv Funct Mater, 2020, 30(27): 2001588. |
62 | FANG Y, LIAN R, LI H, et al. Induction of planar sodium growth on MXene (Ti3C2Tx)-modified carbon cloth hosts for flexible sodium metal anodes[J]. ACS Nano, 2020, 14(7): 8744-8753. |
63 | ASLAM M K,XU M. A mini-review: MXene composites for sodium/potassium-ion batteries[J]. Nanoscale, 2020, 12(30): 15993-16007. |
64 | ZUO D C, SONG S C, AN C S, et al. Synthesis of sandwich-like structured Sn/SnOx@MXene composite through in-situ growth for highly reversible lithium storage[J]. Nano Energy, 2019, 62: 401-409. |
65 | GUO X, XIE X, CHOI S, et al. Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries[J]. J Mater Chem A, 2017, 5(24): 12445-12452. |
66 | ARNOLD S, GENTILE A, LI Y, et al. Design of high-performance antimony/MXene hybrid electrodes for sodium-ion batteries[J]. J Mater Chem A, 2022, 10(19): 10569-10585. |
67 | ZHANG P, ZHU Q, WEI Y, et al. Achieving stable and fast potassium storage of Sb2S3@MXene anode via interfacial bonding and electrolyte chemistry[J]. Chem Eng J, 2023, 451: 138891. |
68 | TIAN X, ZHANG P, LIAO Y, et al. Achieving stable and ultrafast potassium storage of antimony anode via dual confinement of MXene@carbon framework[J]. Small Methods, 2023: e2201525. |
69 | ZHAO R, DI H, WANG C, et al. Encapsulating ultrafine Sb nanoparticles in Na+ pre-intercalated 3D porous Ti3C2Tx MXene nanostructures for enhanced potassium storage performance[J]. ACS Nano, 2020, 14(10): 13938-13951. |
70 | YU D K, PARK C M. Sb-based intermetallics and nanocomposites as stable and fast Na-ion battery anodes[J]. Chem Eng J, 2021, 409: 127380. |
71 | YI Z, HAN Q, GENG D, et al. One-pot chemical route for morphology-controllable fabrication of Sn-Sb micro/nano-structures: advanced anode materials for lithium and sodium storage[J]. J Power Sources, 2017, 342: 861-871. |
72 | LI X, ZHANG X, NIU X, et al. Strain retarding in multilayered hierarchical Sn-doped Sb nanoarray for durable sodium storage[J]. Adv Funct Mater, 2023, 33(33): 2300914. |
73 | SHI X, LIU W, ZHANG D, et al. Nanoscale localized growth of snsb for general-purpose high performance alkali (Li, Na, K) ion storage[J]. Chem Eng J, 2022, 431: 134318. |
74 | LAO M, ZHANG Y, LUO W, et al. Alloy-based anode materials toward advanced sodium-ion batteries[J]. Adv Mater, 2017, 29(48): 1700622. |
75 | WANG Z, WANG J, NI J, et al. Structurally durable bimetallic alloy anodes enabled by compositional gradients[J]. Adv Sci, 2022, 9(16): e2201209. |
76 | WANG J, FAN L, LIU Z, et al. In situ alloying strategy for exceptional potassium ion batteries[J]. ACS Nano, 2019, 13(3): 3703-3713. |
77 | HUANG C, XU A, LI G, et al. Alloyed BiSb nanoparticles confined in tremella-like carbon microspheres for ultralong-life potassium ion batteries[J]. Small, 2021, 17(23): e2100685. |
78 | NAM D H, HONG K S, LIM S J, et al. Electrochemical synthesis of a three-dimensional porous Sb/Cu2Sb anode for Na-ion batteries[J]. J Power Sources, 2014, 247: 423-427. |
79 | WU P, ZHANG A, PENG L, et al. Cyanogel-enabled homogeneous Sb-Ni-C ternary framework electrodes for enhanced sodium storage[J]. ACS Nano, 2018, 12(1): 759-767. |
80 | ZHOU L, CHENG Y, SUN Q, et al. High alkaline ion storage capacity of hollow interwoven structured Sb/TiO2 particles: the galvanic replacement formation mechanism and volumetric buffer effect[J]. Chem Commun, 2018, 54(32): 4049-4052. |
81 | WANG N, BAI Z, QIAN Y, et al. Double-walled Sb@TiO2- x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries[J]. Adv Mater, 2016, 28(21): 4126-4133. |
82 | CHONG S, MA M, YUAN L, et al. Hierarchical encapsulation and rich sp 2 N assist Sb2Se3-based conversion-alloying anode for long-life sodium- and potassium-ion storage[J]. Energy Environ Mater, 2023: e12458. |
83 | CHEN W, WAN M, LIU Q, et al. Heteroatom-doped carbon materials: synthesis, mechanism, and application for sodium-ion batteries[J]. Small Methods, 2018, 3(4): 1800323. |
84 | CUI C, XU J, ZHANG Y, et al. Antimony nanorod encapsulated in cross-linked carbon for high-performance sodium ion battery anodes[J]. Nano Lett, 2019, 19(1): 538-544. |
85 | WANG Z, ZENG F, ZHANG D, et al. Equably-dispersed Sb/Sb2O3 nanoparticles in ionic liquid-derived nitrogen-enriched carbon for highly reversible lithium/sodium storage[J]. Electrochim Acta, 2021, 395: 139210. |
86 | ZHANG D, WANG C, XUE H, et al. High-rate lithium/sodium storage capacities of nitrogen-enriched porous antimony composite prepared from organic-inorganic ligands[J]. Appl Surf Sci, 2021, 563: 150297. |
87 | VERMA R, NGUYEN A G, DIDWAL P N, et al. In-situ synthesis of antimony nanoparticles encapsulated in nitrogen-doped porous carbon framework as high performance anode material for potassium-ion batteries[J]. Chem Eng J, 2022, 446: 137302. |
88 | CHENG Y, CHEN B, ZHU M, et al. Toward ultra-long cycling stability and high lithium storage performances: silica anodes with catalytic effects of low-cost metals particles[J]. Appl Mater Today, 2021, 25: 101205. |
89 | ZHANG D, CHEN B, WANG S, et al. Boosting reversibility of conversion/alloying reactions for sulfur-rich antimony-based sulfides with extraordinary potassium storage performance[J]. ACS Mater Lett, 2022, 4(12): 2604-2612. |
90 | HUANG Z, DING S, LI P, et al. Flexible Sb-graphene-carbon nanofibers as binder-free anodes for potassium-ion batteries with enhanced properties[J]. Nanotechnology, 2021, 32(2): 025401. |
91 | LIU Z, SUN H, WANG X, et al. Tetrafunctional template-assisted strategy to preciously construct co-doped Sb@C nanofiber with longitudinal tunnels for ultralong-life and high-rate sodium storage[J]. Energy Storage Mater, 2022, 48: 90-100. |
92 | GE X, LIU S, QIAO M, et al. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers[J]. Angew Chem Int Ed Engl, 2019, 58(41): 14578-14583. |
93 | CAO S Z, SU Y, ZHANG H Y, et al. Sb&Sb2O3@C-enhanced flexible carbon cloth as an advanced self-supporting anode for sodium-ion batteries[J]. New J Chem, 2020, 44(12): 4719-4725. |
94 | IMTIAZ S, KAPURIA N, AMIINU I S, et al. Directly deposited antimony on a copper silicide nanowire array as a high-performance potassium-ion battery anode with a long cycle life[J]. Adv Funct Mater, 2022, 33(2): 2209566. |
95 | GU J, DU Z, ZHANG C, et al. Liquid-phase exfoliated metallic antimony nanosheets toward high volumetric sodium storage[J]. Adv Energy Mater, 2017, 7(17): 1700447. |
96 | TIAN Z, ZOU Y, LIU G, et al. Electrolyte solvation structure design for sodium ion batteries[J]. Adv Sci, 2022, 9(22): 2201207. |
97 | SONG J, XIAO B, LIN Y, et al. Interphases in sodium-ion batteries[J]. Adv Energy Mater, 2018, 8(17): 1703082. |
98 | LI K, GALLE KANKANAMGE S R, WELDEGHIORGHIS T K, et al. Predicting ion association in sodium electrolytes: a transferrable model for investigating glymes[J]. J Phys Chem C, 2017, 122(9): 4747-4756. |
99 | DU X, GAO Y, ZHANG B. Building elastic solid electrolyte interphases for stabilizing microsized antimony anodes in potassium ion batteries[J]. Adv Funct Mater, 2021, 31(26): 2102562. |
100 | ZHOU L, CAO Z, WAHYUDI W, et al. Electrolyte engineering enables high stability and capacity alloying anodes for sodium and potassium ion batteries[J]. ACS Energy Lett, 2020, 5(3): 766-776. |
101 | ZHOU L, CAO Z, ZHANG J, et al. Electrolyte-mediated stabilization of high-capacity micro-sized antimony anodes for potassium-ion batteries[J]. Adv Mater, 2021, 33(8): 2005993. |
102 | LI L, ZHAO S, HU Z, et al. Developing better ester- and ether-based electrolytes for potassium-ion batteries[J]. Chem Sci, 2021, 12(7): 2345-2356. |
103 | LI Y, WU F, LI Y, et al. Ether-based electrolytes for sodium ion batteries[J]. Chem Soc Rev, 2022, 51(11): 4484-4536. |
104 | LV Z, LI T, HOU X, et al. Solvation structure and solid electrolyte interface engineering for excellent Na+ storage performances of hard carbon with the ether-based electrolytes[J]. Chem Eng J, 2022, 430: 133143. |
[1] | Xue-Jian SHI, Wan-Qiang LIU, Chun-Li WANG, Yong CHENG, Li-Min WANG. Research Progress of Sb-based Anode Materials for Potassium Ion Batteries [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 210-228. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||