1 |
QU E, HAO X, XIAO M, et al. Proton exchange membranes for high temperature proton exchange membrane fuel cells: challenges and perspectives[J]. J Power Sources, 2022, 533: 231386.
|
2 |
OLABI A G, WILBERFORCE T, ALANAZI A, et al. Novel trends in proton exchange membrane fuel cells[J]. Energies, 2022, 15(14): 4949.
|
3 |
张永明, 唐军柯, 袁望章. 燃料电池全氟磺酸质子交换膜研究进展[J]. 膜科学与技术, 2011, 31(3): 76-85.
|
|
ZHANG Y M, TANG J K, YUAN W Z. Research progress of perfluorosulfonic acid proton exchange membranes for fuel cells[J]. Membr Sci Technol, 2011, 31(3): 76-85.
|
4 |
董以宁, 李赫, 宫雪, 等. 非Pt基催化剂在质子交换膜燃料电池阴极氧还原反应中的研究进展[J]. 应用化学, 2023, 40(8): 1077-1093
|
|
DONG Y N, LI H, GONG X, et al. Research progress of non-Pt-based catalysts in cathode oxygen reduction reaction of proton exchange membrane fuel cells[J]. Chin J Appl Chem, 2023, 40(8): 1077-1093.
|
5 |
AHMAD S, NAWAZ T, ALI A, et al. An overview of proton exchange membranes for fuel cells: materials and manufacturing[J]. Int J Hydrogen Energy, 2022, 47(44): 19086-19131.
|
6 |
高帷韬, 雷一杰, 张勋, 等. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555.
|
|
GAO W T, LEI Y J, ZHANG X, et al. An overview of proton exchange membrane fuel cell[J]. Chem Ind Eng Prog, 2022, 41(3): 1539-1555.
|
7 |
MAURITZ K A, MOORE R B. State of understanding of Nafion[J]. Chem Rev, 2004, 104(10): 4535-4586.
|
8 |
SHI X, MA Y, HUO X, et al. Nafion membranes for e-fuel cell applications[J]. Int J Green Energy, 2021: 1-7.
|
9 |
BASSIL J, LABALME E, SOUQUET-GRUMEY J, et al. Plasma-treated phosphonic acid-based membranes for fuel cell[J]. Int J Hydrogen Energy, 2016, 41(34): 15593-15604.
|
10 |
PERON J, MANI A, ZHAO X S, et al. Properties of Nafion NR-211 membranes for PEMFCs[J]. J Membr Sci, 2010, 356(1/2):44-51.
|
11 |
BARIQUE M A, TSUCHIDA E, OHIRA A, et al. Effect of elevated temperatures on the states of water and their correlation with the proton conductivity of Nafion[J]. ACS Omega, 2018, 3(1): 349-360.
|
12 |
DE ALMEIDA S, KAWANO Y. Thermal behavior of Nafion membranes[J]. J Therm Anal Calorim, 1999, 58(3): 569-577.
|
13 |
KRASNOVA A O, GLEBOVA N V, KASTSOVA A G, et al. Thermal stabilization of Nafion with nanocarbon materials[J]. Polymers, 2023, 15(9): 2070.
|
14 |
GLEBOVA N V, NECHITAILOV A A, KRASNOVA A O. Thermal degradation of Nafion in the presence of nanostructured materials: thermally expanded graphite, carbon black, and platinum[J]. Russ J Appl Chem, 2020, 93: 1034-1041.
|
15 |
SCHUSTER M, KREUER K D, STEININGER H, et al. Proton conductivity and diffusion study of molten phosphonic acid H3PO3[J]. Solid State Ionics, 2008, 179(15/16): 523-528.
|
16 |
LIM K H, LEE A S, ATANASOV V, et al. Protonated phosphonic acid electrodes for high power heavy-duty vehicle fuel cells[J]. Nat Energy, 2022, 7(3): 248-259.
|
17 |
JUNG J, LIM K H, MAURYA S, et al. Dispersing agents impact performance of protonated phosphonic acid high-temperature polymer electrolyte membrane fuel cells[J]. ACS Energy Lett, 2022, 7(5): 1642-1647.
|
18 |
TRIPATHI B P, SAXENA A, SHAHI V K. Phosphonic acid grafted bis(4-γ-aminopropyldiethoxysilylphenyl) sulfone (APDSPS)-poly(vinyl alcohol) cross-linked polyelectrolyte membrane impervious to methanol[J]. J Membr Sci, 2008, 318(1/2): 288-297.
|
19 |
ATANASOV V, OLEYNIKOV A, XIA J, et al. Phosphonic acid functionalized poly(pentafluorostyrene) as polyelectrolyte membrane for fuel cell application[J]. J Power Sources, 2017, 343: 364-372.
|
20 |
KREUER K D, PADDISON S J, SPOHR E, et al. Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology[J]. Chem Rev, 2004, 104(10): 4637-4678.
|
21 |
SCHUSTER M, RAGER T, NODA A, et al. About the choice of the protogenic group in PEM separator materials for intermediate temperature, low humidity operation: a critical comparison of sulfonic acid, phosphonic acid and imidazole functionalized model compounds[J]. Fuel Cells, 2005, 5(3): 355-365.
|
22 |
YAMABE M, AKIYAMA K, AKATSUKA Y, et al. Novel phosphonated perfluorocarbon polymers[J]. Eur Polym J, 2000, 36(5): 1035-1041.
|
23 |
PEDERSEN S D, QIU W, QIU Z M, et al. The synthesis of phosphonate ester containing fluorinated vinyl ethers[J]. J Org Chem, 1996, 61(23): 8024-8031.
|
24 |
马敬骥, 黄浩强, 吴瑞征, 等. 带功能基的全氟 (烷基乙烯基) 醚的研究 Ⅱ: 全氟 (5-甲基-4, 7-二氧杂-Δ 8-壬酸) 甲酯的合成[J]. 化学学报, 1989, 47(7): 720.
|
|
MA J J, HUANG H Q, WU R Z, et al. Studies on perfluoroalkyl vinyl ethers with functional groups Ⅱ: synthesis of methyl perfluoro-(5-methyl-4, 7-dioxa-Δ 8-nonanoate)[J]. Acta Chim Sin, 1989, 47(7): 720.
|
25 |
GROOTAERT W M A, GUERRA M A. Fluoropolymers comprising monomeric units derived from a vinyl perfluoroalkyl or vinyl perfluoroalkylenoxide perfluorovinyl ether: US, 2014/041652[P]. 2014-12-18.
|
26 |
肖吉昌, 杜若冰. 氟烷基碘代物的制备方法: 中国, 201810832185.0[P]. 2021-12-14.
|
|
XIAO J C, DU R B. Preparation method of fluoroalkyl iodide: CN, 201810832185.0[P]. 2021-12-14.
|
27 |
PANIGRAHI K, APPLEGATE G A, MALIK G, et al. Combining a clostridial enzyme exhibiting unusual active site plasticity with a remarkably facile sigmatropic rearrangement: rapid, stereocontrolled entry into densely functionalized fluorinated phosphonates for chemical biology[J]. J Am Chem Soc, 2015, 137(10): 3600-3609.
|
28 |
XUE C, HE G, FU C, et al. The reaction of carboxylic acid esters with RfMgBr: a convenient synthesis of perfluoroalkyl ketones[J]. Eur J Org Chem, 2010. DOI:10.1002/ejoc.201000887.
|
29 |
ZHU J S, STIERS K M, WINTER S M, et al. Synthesis, derivatization, and structural analysis of phosphorylated mono-, di-, and tri-fluorinated D-gluco-heptuloses by glucokinase: tunable phosphoglucomutase inhibition[J]. ACS Omega, 2019, 4: 7029-7037.
|
30 |
刘雨燕, 方烨汶, 张莉, 等. LiCl促进的多官能团格氏试剂的制备及应用研究进展[J]. 有机化学, 2014, 34(8): 1523.
|
|
LIU Y Y, FANG Y W, ZHANG L, et al. Advances in LiCl-promoted preparation of polyfunctional grignard reagents and the applications[J]. Chin J Org Chem, 2014, 34(8): 1523.
|
31 |
DORDONNE S, CROUSSE B, BONNET-DELPON D, et al. Fluorous tagging of DABCO through halogen bonding: recyclable catalyst for the Morita-Baylis-Hillman reaction[J]. Chem Commun, 2011, 47(20): 5855-5857.
|
32 |
ALENA, BUDINSKÁUDINSKÁ, JIŘÍ, et al. Nucleophilic tetrafluoroethylation employing in situ formed organomagnesium reagents[J]. Org Lett, 2016, 18: 5844-5847.
|
33 |
BURTON D J, YANG Z Y. Fluorinated organometallics: perfluoroalkyl and functionalized perfluoroalkyl organometallic reagents in organic synthesis[J]. Tetrahedron, 1992, 48(2): 189-275.
|
34 |
WANG L L, ZHOU H, CAO Y X, et al. A general copper-catalysed enantioconvergent radical Michaelis-Becker-type C(sp 3)—P cross-coupling[J]. Nat Synth, 2023, 2(5): 430-438.
|
35 |
TING M, LIANG Z, YANG H, et al. N-Difluoromethylation of imidazoles and pyrazoles using BrCF2PO(OEt)2 under mild condition[J]. Tetrahedron Lett, 2018, 59: 2752-2754.
|
36 |
CHAI J Y, CHA H, KIM H B, et al. Selective addition reactions of difluoromethyltriazoles to ketones and aldehydes without the formation of difluorocarbene[J]. Tetrahedron, 2020, 76(31/32): 131370.
|