Chinese Journal of Applied Chemistry ›› 2023, Vol. 40 ›› Issue (7): 976-994.DOI: 10.19894/j.issn.1000-0518.230092
• Review • Previous Articles Next Articles
Chao-Yu WANG1, Lu ZHAO1, Ke-Wei WANG1, Yun-Feng BAI1(
), Feng FENG1,2(
)
Received:2023-04-06
Accepted:2023-06-24
Published:2023-07-01
Online:2023-07-19
Contact:
Yun-Feng BAI,Feng FENG
About author:feng-feng64@263.netSupported by:CLC Number:
Chao-Yu WANG, Lu ZHAO, Ke-Wei WANG, Yun-Feng BAI, Feng FENG. Research Progress in Preparation Strategy of Covalent Organic Frameworks and Its Application in Tumor Therapy[J]. Chinese Journal of Applied Chemistry, 2023, 40(7): 976-994.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.230092
Fig.8 (a) Schematic illustration for the construction of CONDs and main mechanism of PDT[82]; (b) Schematic illustration for the construction of Py-BPy+?-COF and main mechanism of PTT[87]; (c) Schematic illustration for PgP@Fe-COF NPs enhances the SDT mechanism of action[88]; (d) Schematic illustration for the construction of PEG-CCM@APTES-COF-1 and main mechanism of CT[89]
| COFs | Linkage | Drug molecules | Drug loading rate | Drug release ability | Response | Cell line | Ref. |
|---|---|---|---|---|---|---|---|
| APTES-COF-1 | Boroxine | DOX | 9.7% | — | — | Hela | |
| TpASH | β-Ketoenamine | 5-FU | 12% | 74% drug release after 72 h | pH | MDA-MB-231 | |
| TAPB-DMTP-COF | Imine | DOX | 32.1% | 40% release within 2 h, complete release after 24 h | pH | L929 | |
| F68@SS-COFs | Imine | DOX | 21% | 94% drug release after 24 h | GSH | HepG2 | |
| Fe3O4@COF | Imine | DOX | 0.5 mg/mg | — | — | HeLa | |
| COF-HQ | Imine | 5-FU | — | 61.6% drug release after 48 h | pH | B16F10 | |
| TTI-COF | Imine | Quercetin | — | — | — | MDA-MB-231 | |
| TA-COF | Imine | TPZ | 17.8% | — | Azo reductase | 4T1 | |
| DT-COF | Imine | CBP | 31.32% | — | pH | — | |
| PI-2-COF,PI-3-COF | Imide | IBU,5-FU,Captopril | 30% | 85% drug release for 5-FU | pH | MCF-7 | |
| PI-COF-4 | Imide | IBU | 24% | 95% drug release | pH | — | |
| PI-COF-5 | Imide | IBU | 20% | 95% drug release | pH | — | |
| TTI-COF film | Imine | DOX | — | — | pH | — | |
| TPA-TMB-COF | Imine | DOX | 35% | 85% drug release after 72 h | pH | A549 | |
| HFPB-TAPA | Imine | IBU | 14.0% | 99% drug release after 5 d | pH | H9C2 | |
| TAPB-DMTA-COF | Imine | CUR | 27.68% | 74.6% drug release after 100 h | pH | L929 | |
| COFTTA-DHTA | Imine | PFD | — | 74% drug release after 72 h | pH | CT26 | |
| TP-Por COF | Imine | CAD | EE%=67% | 48.2% drug release after 24 h | pH | 4T1 |
Table 1 Applications of COFs in drug deliver
| COFs | Linkage | Drug molecules | Drug loading rate | Drug release ability | Response | Cell line | Ref. |
|---|---|---|---|---|---|---|---|
| APTES-COF-1 | Boroxine | DOX | 9.7% | — | — | Hela | |
| TpASH | β-Ketoenamine | 5-FU | 12% | 74% drug release after 72 h | pH | MDA-MB-231 | |
| TAPB-DMTP-COF | Imine | DOX | 32.1% | 40% release within 2 h, complete release after 24 h | pH | L929 | |
| F68@SS-COFs | Imine | DOX | 21% | 94% drug release after 24 h | GSH | HepG2 | |
| Fe3O4@COF | Imine | DOX | 0.5 mg/mg | — | — | HeLa | |
| COF-HQ | Imine | 5-FU | — | 61.6% drug release after 48 h | pH | B16F10 | |
| TTI-COF | Imine | Quercetin | — | — | — | MDA-MB-231 | |
| TA-COF | Imine | TPZ | 17.8% | — | Azo reductase | 4T1 | |
| DT-COF | Imine | CBP | 31.32% | — | pH | — | |
| PI-2-COF,PI-3-COF | Imide | IBU,5-FU,Captopril | 30% | 85% drug release for 5-FU | pH | MCF-7 | |
| PI-COF-4 | Imide | IBU | 24% | 95% drug release | pH | — | |
| PI-COF-5 | Imide | IBU | 20% | 95% drug release | pH | — | |
| TTI-COF film | Imine | DOX | — | — | pH | — | |
| TPA-TMB-COF | Imine | DOX | 35% | 85% drug release after 72 h | pH | A549 | |
| HFPB-TAPA | Imine | IBU | 14.0% | 99% drug release after 5 d | pH | H9C2 | |
| TAPB-DMTA-COF | Imine | CUR | 27.68% | 74.6% drug release after 100 h | pH | L929 | |
| COFTTA-DHTA | Imine | PFD | — | 74% drug release after 72 h | pH | CT26 | |
| TP-Por COF | Imine | CAD | EE%=67% | 48.2% drug release after 24 h | pH | 4T1 |
Fig.9 (a) Schematic illustration for the construction of PcS@COF-1 and main mechanism of enhanced PDT[119]?; (b) Schematic illustration for the construction of COF@IR783 and main mechanism of PTT[117]?; (c) Schematic illustration for the construction of COF-TiO2 and main mechanism of SDT[122]
Fig.10 (a) Schematic illustration for the construction of VONc@COF-Por and main mechanism of PDT/PTT combination therapy[124]?; (b) Schematic illustration for the construction of TA-COF-P@CT and main mechanism of PDT/CT combination therapy[107]?; (c) Schematic illustration for the construction of GA@PCOF@PDA and main mechanism of PTT/PDT/CT combination therapy?[128]?; (d) Schematic illustration for the construction of CuS@COFs-BSA-FA/DOX and main mechanism of CT/PTT/CDT combination therapy[129]
| 1 | DAS S, HEASMAN P, BEN T, et al. Porous organic materials: strategic design and structure-function correlation[J]. Chem Rev, 2017, 117(3): 1515-1563. |
| 2 | DAVANKOV V A, TSYURUPA M P. Structure and properties of hypercrosslinked polystyrene—the first representative of a new class of polymer networks[J]. React Polym, 1990, 13(1): 27-42. |
| 3 | MCKEOWN N B, MAKHSEED S, BUDD P M. Phthalocyanine-based nanoporous network polymers[J]. Chem Commun, 2002(23): 2780-2781. |
| 4 | YAGHI O M, O'KEEFFE M, OCKWIG N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423(6941): 705-714. |
| 5 | YAGHI O M. The reticular chemist[J]. Nano Lett, 2020, 20(12): 8432-8434. |
| 6 | HALDER A, KARAK S, ADDICOAT M, et al. Ultrastable imine-based covalent organic frameworks for sulfuric acid recovery: an effect of interlayer hydrogen bonding[J]. Angew Chem Int Ed, 2018, 57(20): 5797-5802. |
| 7 | DIERCKS CHRISTIAN S, YAGHI OMAR M. The atom, the molecule, and the covalent organic framework[J]. Science, 2017, 355(6328): eaal1585. |
| 8 | XU H, TAO S S, JIANG D L. Proton conduction in crystalline and porous covalent organic frameworks[J]. Nat Mater, 2016, 15(7): 722-726. |
| 9 | ZHANG J, HAN X, WU X W, et al. Multivariate chiral covalent organic frameworks with controlled crystallinity and stability for asymmetric catalysis[J]. J Am Chem Soc, 2017, 139(24): 8277-8285. |
| 10 | YAGHI O M, LI G, LI H. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558): 703-706. |
| 11 | 冯海弟, 赵璐, 白云峰, 等. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1848. |
| FENG H D, ZHAO L, BAI Y F, et al. The application of nanoscale metal-organic frameworks for tumor targeted therapy[J]. Prog Chem, 2022, 34(8): 1863-1848. | |
| 12 | HUANG N, CHEN X, KRISHNA R, et al. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization[J]. Angew Chem Int Ed, 2015, 54(10): 2986-2990. |
| 13 | HAN S S, MENDOZA-CORTÉS J L, GODDARD III W A. Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks[J]. Chem Soc Rev, 2009, 38(5): 1460-1476. |
| 14 | ZHAN X J, CHEN Z, ZHANG Q C. Recent progress in two-dimensional COFs for energy-related applications[J]. J Mater Chem A, 2017, 5(28): 14463-14479. |
| 15 | 兰亚乾, 刘江, 商林杰. 共价有机框架材料用于光/电催化CO2还原的研究进展[J]. 应用化学, 2022, 39(4): 559-584. |
| LAN Y Q, LIU J, SHANG L J. Covalent organic framework materials for photo/ electrocatalytic carbon dioxide reduction[J]. Chin J Appl Chem, 2022, 39(4): 559-584. | |
| 16 | 王禹婷, 杨天怡, 章应辉. 卟啉框架材料在光催化领域的应用[J]. 应用化学, 2020, 37(6): 611-619. |
| WANG Y T, YANG T Y, ZHANG Y H. Application of porphyrin-based framework materials on photocatalysis[J]. Chin J Appl Chem, 2020, 37(6): 611-619. | |
| 17 | ZUO H Y, LI Y, LIAO Y Z. Europium ionic liquid grafted covalent organic framework with dual luminescence emissions as sensitive and selective acetone sensor[J]. ACS Appl Mater Interfaces, 2019, 11(42): 39201-39208. |
| 18 | LIN Y X, DENG Y, WANG M U, et al. DNA-functionalized covalent organic framework capsules for analysis of exosomes[J]. Talanta, 2023, 253: 124043. |
| 19 | YUAN L H, CHAI J, WANG S W, et al. Biomimetic laccase-Cu2O@MOF for synergetic degradation and colorimetric detection of phenolic compounds in wastewater[J]. Environ Technol Innovation, 2023, 30: 103085. |
| 20 | GUAN Q, ZHOU L L, LI W Y, et al. Covalent organic frameworks (COFs) for cancer therapeutics[J]. Chem-Eur J, 2020, 26(25): 5583-5591. |
| 21 | HAN Z Y, QIAN Y, GAO X Y, et al. Hypoxia-responsive covalent organic framework by single NIR laser-triggered for multimodal synergistic therapy of triple-negative breast cancer[J]. Colloids Surf B: Biointerfaces, 2023, 222: 113094. |
| 22 | LI W Y, WAN J J, KAN J L, et al. A biodegradable covalent organic framework for synergistic tumor therapy[J]. Chem Sci, 2023, 14(6): 1453-1460. |
| 23 | BAI Z Q, ZHAO L, FENG H D, et al. Fabricating aptamer-functionalized Ti3C2 therapeutic nanoplatform for targeted chemo-photothermal therapy of cancer[J]. Mater Design, 2023, 226: 111656. |
| 24 | CÔTÉ A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
| 25 | GUAN Q, WANG G B, ZHOU L L, et al. Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications[J]. Nanoscale Adv, 2020, 2(9): 3656-3733. |
| 26 | ESRAFILI A, WAGNER A, INAMDAR S, et al. Covalent organic frameworks for biomedical applications[J]. Adv Healthcare Mater, 2021, 10(6): 2002090. |
| 27 | KUMAR S, KULKARNI V V, JANGIR R. Covalent-organic framework composites: a review report on synthesis methods[J]. ChemistrySelect, 2021, 6(41): 11201-11223. |
| 28 | LIU R Y, TAN K T, GONG Y F, et al. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications[J]. Chem Soc Rev, 2021, 50(1): 120-242. |
| 29 | BHUNIA S, DEO K A, GAHARWAR A K. 2D covalent organic frameworks for biomedical applications[J]. Adv Funct Mater, 2020, 30(27): 2002046. |
| 30 | XU H, GAO J, JIANG D L. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts[J]. Nat Chem, 2015, 7(11): 905-912. |
| 31 | BISWAL B P, CHANDRA S, KANDAMBETH S, et al. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks[J]. J Am Chem Soc, 2013, 135(14): 5328-5331. |
| 32 | CAMPBELL N L, CLOWES R, RITCHIE L K, et al. Rapid microwave synthesis and purification of porous covalent organic frameworks[J]. Chem Mater, 2009, 21(2): 204-206. |
| 33 | KUHN P, ANTONIETTI M, THOMAS A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis[J]. Angew Chem Int Ed, 2008, 47(18): 3450-3453. |
| 34 | LIU J J, ZAN W, LI K, et al. Solution synthesis of semiconducting two-dimensional polymer via trimerization of carbonitrile[J]. J Am Chem Soc, 2017, 139(34): 11666-11669. |
| 35 | MEDINA D D, ROTTER J M, HU Y, et al. Room temperature synthesis of covalent-organic framework films through vapor-assisted conversion[J]. J Am Chem Soc, 2015, 137(3): 1016-1019. |
| 36 | EVANS A M, PARENT L R, FLANDERS N C, et al. Seeded growth of single-crystal two-dimensional covalent organic frameworks[J]. Science, 2018, 361(6397): 52-57. |
| 37 | EL-KADERI H M, HUNT J R, MENDOZA-CORTÉS J L, et al. Designed synthesis of 3D covalent organic frameworks[J]. Science, 2007, 316(5822): 268-272. |
| 38 | WAN S, GUO J, KIM J, et al. A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation[J]. Angew Chem Int Ed, 2009, 48(30): 5439-5442. |
| 39 | SMITH B J, HWANG N, CHAVEZ A D, et al. Growth rates and water stability of 2D boronate ester covalent organic frameworks[J]. Chem Commun, 2015, 51(35): 7532-7535. |
| 40 | DU Y, MAO K, KAMAKOTI P, et al. Experimental and computational studies of pyridine-assisted post-synthesis modified air stable covalent-organic frameworks[J]. Chem Commun, 2012, 48(38): 4606-4608. |
| 41 | DU Y, CALABRO D, WOOLER B, et al. One step facile synthesis of amine-functionalized COF-1 with enhanced hydrostability[J]. Chem Mater, 2015, 27(5): 1445-1447. |
| 42 | DU Y, YANG H, WHITELEY J M, et al. Ionic covalent organic frameworks with spiroborate linkage[J]. Angew Chem Int Ed, 2016, 55(5): 1737-1741. |
| 43 | BOJDYS M J, JEROMENOK J, THOMAS A, et al. Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity[J]. Adv Mater, 2010, 22(19): 2202-2205. |
| 44 | YANG Z Z, CHEN H, WANG S, et al. Transformation strategy for highly crystalline covalent triazine frameworks: from staggered AB to eclipsed AA stacking[J]. J Am Chem Soc, 2020, 142(15): 6856-6860. |
| 45 | WANG K W, YANG L M, WANG X, et al. Covalent triazine frameworks via a low-temperature polycondensation approach[J]. Angew Chem Int Ed, 2017, 56(45): 14149-14153. |
| 46 | YANG N, GU Y I, SHAN Y L, et al. Dual rate-modulation approach for the preparation of crystalline covalent triazine frameworks displaying efficient sodium storage[J]. ACS Macro Lett, 2022, 11(1): 60-65. |
| 47 | LIU M Y, JIANG K, DING X, et al. Controlling monomer feeding rate to achieve highly crystalline covalent triazine frameworks[J]. Adv Mater, 2019, 31(19): 1807865. |
| 48 | URIBE-ROMO F J, HUNT J R, FURUKAWA H, et al. A crystalline imine-linked 3-D porous covalent organic framework[J]. J Am Chem Soc, 2009, 131(13): 4570-4571. |
| 49 | WAN S, GÁNDARA F, ASANO A, et al. Covalent organic frameworks with high charge carrier mobility[J]. Chem Mat, 2011, 23(18): 4094-4097. |
| 50 | KANDAMBETH S, MALLICK A, LUKOSE B, et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route[J]. J Am Chem Soc, 2012, 134(48): 19524-19527. |
| 51 | SMITH B J, OVERHOLTS A C, HWANG N, et al. Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks[J]. Chem Commun, 2016, 52(18): 3690-3693. |
| 52 | HU J Y, ZANCA F, MCMANUS G J, et al. Catalyst-enabled in situ linkage reduction in imine covalent organic frameworks[J]. ACS Appl Mater Interfaces, 2021, 13(18): 21740-21747. |
| 53 | LI X L, ZHANG C L, CAI S L, et al. Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks[J]. Nat Commun, 2018, 9(1): 2998. |
| 54 | FANG Q R, GU S, ZHENG J, et al. 3D Microporous base-functionalized covalent organic frameworks for size-selective catalysis[J]. Angew Chem Int Ed, 2014, 53(11): 2878-2882. |
| 55 | CUSIN L, PENG H, CIESIELSKI A, et al. Chemical conversion and locking of the imine linkage: enhancing the functionality of covalent organic frameworks[J]. Angew Chem Int Ed, 2021, 60(26): 14236-14250. |
| 56 | WALLER P J, ALFARAJ Y S, DIERCKS C S, et al. Conversion of imine to oxazole and thiazole linkages in covalent organic frameworks[J]. J Am Chem Soc, 2018, 140(29): 9099-9103. |
| 57 | WANG K W, JIA Z F, BAI Y, et al. Synthesis of Stable thiazole-linked covalent organic frameworks via a multicomponent reaction[J]. J Am Chem Soc, 2020, 142(25): 11131-11138. |
| 58 | REN X R, BAI B, ZHANG Q S, et al. Constructing stable chromenoquinoline-based covalent organic frameworks via intramolecular povarov reaction[J]. J Am Chem Soc, 2022, 144(6): 2488-2494. |
| 59 | URIBE-ROMO F J, DOONAN C J, FURUKAWA H, et al. Crystalline covalent organic frameworks with hydrazone linkages[J]. J Am Chem Soc, 2011, 133(30): 11478-11481. |
| 60 | DALAPATI S, JIN S, GAO J, et al. An azine-linked covalent organic framework[J]. J Am Chem Soc, 2013, 135(46): 17310-17313. |
| 61 | FANG Q R, ZHUANG Z B, GU S, et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks[J]. Nat Commun, 2014, 5(1): 4503. |
| 62 | VYAS V S, HAASE F, STEGBAUER L, et al. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation[J]. Nat Commun, 2015, 6(1): 8508. |
| 63 | WALLER P J, LYLE S J, OSBORN POPP T M, et al. Chemical conversion of linkages in covalent organic frameworks[J]. J Am Chem Soc, 2016, 138(48): 15519-15522. |
| 64 | STEWART D, ANTYPOV D, DYER M S, et al. Stable and ordered amide frameworks synthesised under reversible conditions which facilitate error checking[J]. Nat Commun, 2017, 8(1): 1102. |
| 65 | ZHUANG X D, ZHAO W X, ZHANG F, et al. A two-dimensional conjugated polymer framework with fully sp 2-bonded carbon skeleton[J]. Polym Chem, 2016, 7(25): 4176-4181. |
| 66 | JIN E, ASADA M, XU Q, et al. Two-dimensional sp 2 carbon-conjugated covalent organic frameworks[J]. Science, 2017, 357(6352): 673-676. |
| 67 | JIN E, LI J, GENG K, et al. Designed synthesis of stable light-emitting two-dimensional sp 2 carbon-conjugated covalent organic frameworks[J]. Nat Commun, 2018, 9(1): 4143. |
| 68 | LYU H, DIERCKS C S, ZHU C, et al. Porous crystalline olefin-linked covalent organic frameworks[J]. J Am Chem Soc, 2019, 141(17): 6848-6852. |
| 69 | BI S, YANG C, ZHANG W B, et al. Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms[J]. Nat Commun, 2019, 10(1): 2467. |
| 70 | ZHANG B, WEI M F, MAO H Y, et al. Crystalline dioxin-linked covalent organic frameworks from irreversible reactions[J]. J Am Chem Soc, 2018, 140(40): 12715-12719. |
| 71 | GUAN X Y, LI H, MA Y C, et al. Chemically stable polyarylether-based covalent organic frameworks[J]. Nat Chem, 2019, 11(6): 587-594. |
| 72 | JACKSON K T, REICH T E, EL-KADERI H M. Targeted synthesis of a porous borazine-linked covalent organic framework[J]. Chem Commun, 2012, 48(70): 8823-8825. |
| 73 | LIU Y, ZHANG Y P, LI X M, et al. Fluorescence-enhanced covalent organic framework nanosystem for tumor imaging and photothermal therapy[J]. Nanoscale, 2019, 11(21): 10429-10438. |
| 74 | HE X L, JIANG Z Q, AKAKURU O U, et al. Nanoscale covalent organic frameworks: from controlled synthesis to cancer therapy[J]. Chem Commun, 2021, 57(93): 12417-12435. |
| 75 | LIN G Q, DING H M, YUAN D Q, et al. A pyrene-based, fluorescent three-dimensional covalent organic framework[J]. J Am Chem Soc, 2016, 138(10): 3302-3305. |
| 76 | LIN G Q, DING H M, CHEN R F, et al. 3D porphyrin-based covalent organic frameworks[J]. J Am Chem Soc, 2017, 139(25): 8705-8709. |
| 77 | CHEN L, FURUKAWA K, GAO J, et al. Photoelectric covalent organic frameworks: converting open lattices into ordered donor-acceptor heterojunctions[J]. J Am Chem Soc, 2014, 136(28): 9806-9809. |
| 78 | KELLER N, BESSINGER D, REUTER S, et al. Oligothiophene-bridged conjugated covalent organic frameworks[J]. J Am Chem Soc, 2017, 139(24): 8194-8199. |
| 79 | DOLMANS D E J G J, FUKUMURA D, JAIN R K. Photodynamic therapy for cancer[J]. Nat Rev Cancer, 2003, 3(5): 380-387. |
| 80 | 白志强, 赵璐, 白云峰, 等. MXenes的制备、性质及其在肿瘤诊疗中的研究进展[J]. 无机材料学报, 2022, 37(4):361-375. |
| BAI Z Q, ZHAO L, BAI Y F, et al. Research progress on MXenes: preparation, property and application in tumor theranostics[J]. J Inorg Mater, 2022, 37(4): 361-375. | |
| 81 | CHENG L, WANG C, FENG L, et al. Functional nanomaterials for phototherapies of cancer[J]. Chem Rev, 2014, 114(21): 10869-10939. |
| 82 | ZHANG Y, ZHANG L, WANG Z Z, et al. Renal-clearable ultrasmall covalent organic framework nanodots as photodynamic agents for effective cancer therapy[J]. Biomaterials, 2019, 223: 119462. |
| 83 | SINGH N, KIM J, KIM J, et al. Covalent organic framework nanomedicines: biocompatibility for advanced nanocarriers and cancer theranostics applications[J]. Bioact Mater, 2023, 21: 358-380. |
| 84 | REN W X, KONG F, SHAO Y Q, et al. A covalent organic framework with a self-contained light source for photodynamic therapy[J]. Chem Commun, 2022, 58(34): 5245-5248. |
| 85 | ZHANG L, WANG S B, ZHOU Y, et al. Covalent organic frameworks as favorable constructs for photodynamic therapy[J]. Angew Chem Int Ed, 2019, 58(40): 14213-14218. |
| 86 | WAN X Y, ZHANG H W, PAN W, et al. An enzyme nanopocket based on covalent organic frameworks for long-term starvation therapy and enhanced photodynamic therapy of cancer[J]. Chem Commun, 2021, 57(44): 5402-5405. |
| 87 | MI Z, YANG P, WANG R, et al. Stable radical cation-containing covalent organic frameworks exhibiting remarkable structure-enhanced photothermal conversion[J]. J Am Chem Soc, 2019, 141(36): 14433-14442. |
| 88 | WANG D W, LIN L, LI T, et al. Etching bulk covalent organic frameworks into nanoparticles of uniform and controllable size by the molecular exchange etching method for sonodynamic and immune combination antitumor therapy[J]. Adv Mater, 2022, 34(45): 2205924. |
| 89 | ZHANG G Y, LI X L, LIAO Q B, et al. Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery[J]. Nat Commun, 2018, 9: 2785. |
| 90 | ABBAS M, ZOU Q L, LI S K, et al. Self-assembled peptide- and protein-based nanomaterials for antitumor photodynamic and photothermal therapy[J]. Adv Mater, 2017, 29(12): 1605021. |
| 91 | JAQUE D, MARTíNEZ MAESTRO L, DEL ROSAL B, et al. Nanoparticles for photothermal therapies[J]. Nanoscale, 2014, 6(16): 9494-9530. |
| 92 | 王涛, 赵璐, 王科伟, 等. 共价有机框架的合成及其在肿瘤治疗中的应用研究进展[J]. 化学学报, 2021, 79(5): 600-613. |
| WANG T, ZHAO L, WANG K W, et al. Research progress on the synthesis of covalent organic frameworks and their applications in tumor therapy[J]. Acta Chim Sin, 2021, 79(5): 600-613. | |
| 93 | GALLEGO N C, KLETT J W. Carbon foams for thermal management[J]. Carbon, 2003, 41(7): 1461-1466. |
| 94 | XIA R, ZHENG X H, LI C N, et al. Nanoscale covalent organic frameworks with donor-acceptor structure for enhanced photothermal ablation of tumors[J]. ACS Nano, 2021, 15(4): 7638-7648. |
| 95 | LIANG S, DENG X R, MA P A, et al. Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy[J]. Adv Mater, 2020, 32(47): 2003214. |
| 96 | LIU S N, ZHOU Y, HU C L, et al. Synthesis of porphyrin-incorporating covalent organic frameworks for sonodynamic therapy[J]. Chem Commun, 2021, 57(66): 8178-8181. |
| 97 | SUN T T, XIA R, ZHOU J L, et al. Protein-assisted synthesis of nanoscale covalent organic frameworks for phototherapy of cancer[J]. Mat Chem Front, 2020, 4(8): 2346-2356. |
| 98 | LIU S N, LIU Z D, MENG Q, et al. Facile synthesis of a cubic porphyrin-based covalent organic framework for combined breast cancer therapy[J]. ACS Appl Mater Interfaces, 2021, 13(48): 56873-56880. |
| 99 | MITRA S, SASMAL H S, KUNDU T, et al. Targeted drug delivery in covalent organic nanosheets (CONs) via sequential postsynthetic modification[J]. J Am Chem Soc, 2017, 139(12): 4513-4520. |
| 100 | SCICLUNA M C, VELLA-ZARB L. Evolution of nanocarrier drug-delivery systems and recent advancements in covalent organic framework-drug systems[J]. ACS Appl Nano Mater, 2020, 3(4): 3097-3115. |
| 101 | ZHOU J, YU G C, HUANG F H. Supramolecular chemotherapy based on host-guest molecular recognition: a novel strategy in the battle against cancer with a bright future[J]. Chem Soc Rev, 2017, 46(22): 7021-7053. |
| 102 | LIU S N, HU C L, LIU Y, et al. One-pot synthesis of DOX@covalent organic framework with enhanced chemotherapeutic efficacy[J]. Chem-Eur J, 2019, 25(17): 4315-4319. |
| 103 | LIU S, YANG J M, GUO R W, et al. Facile fabrication of redox-responsive covalent organic framework nanocarriers for efficiently loading and delivering doxorubicin[J]. Macromol Rapid Commun, 2020, 41(4): 1900570. |
| 104 | ZHAO K, GONG P W, HUANG J, et al. Fluorescence turn-off magnetic COF composite as a novel nanocarrier for drug loading and targeted delivery[J]. Microporous Mesoporous Mat, 2021, 311: 110713. |
| 105 | JIA Y T, ZHANG L N, HE B N, et al. 8-Hydroxyquinoline functionalized covalent organic framework as a pH sensitive carrier for drug delivery[J]. Mater Sci Eng C, 2020, 117: 111243. |
| 106 | VYAS V S, VISHWAKARMA M, MOUDRAKOVSKI I, et al. Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery[J]. Adv Mater, 2016, 28(39): 8749-8754. |
| 107 | GE L, QIAO C Y, TANG Y K, et al. Light-activated hypoxia-sensitive covalent organic framework for tandem-responsive drug delivery[J]. Nano Lett, 2021, 21(7): 3218-3224. |
| 108 | AKYUZ L. An imine based COF as a smart carrier for targeted drug delivery: from synthesis to computational studies[J]. Microporous Mesoporous Mat, 2020, 294: 109850. |
| 109 | BAI L Y, PHUA S Z F, LIM W Q, et al. Nanoscale covalent organic frameworks as smart carriers for drug delivery[J]. Chem Commun, 2016, 52(22): 4128-4131. |
| 110 | ZHAO H Y, JIN Z, SU H M, et al. Targeted synthesis of a 2D ordered porous organic framework for drug release[J]. Chem Commun, 2011, 47(22): 6389-6391. |
| 111 | FANG Q R, WANG J H, GU S, et al. 3D porous crystalline polyimide covalent organic frameworks for drug delivery[J]. J Am Chem Soc, 2015, 137(26): 8352-8355. |
| 112 | YU J P, JIA X, YANG Y M, et al. Molecular dynamics study of a covalent organic framework as highly-efficient and biocompatible carriers for doxorubicin delivery: the role of nanopores[J]. J Phys D: Appl Phys, 2021, 55(10): 105402. |
| 113 | WANG B, LIU X C, GONG P W, et al. Fluorescent COFs with a highly conjugated structure for visual drug loading and responsive release[J]. Chem Commun, 2020, 56(4): 519-522. |
| 114 | LI L X, YUN Q B, ZHU C Z, et al. Isoreticular series of two-dimensional covalent organic frameworks with the kgd topology and controllable micropores[J]. J Am Chem Soc, 2022, 144(14): 6475-6482. |
| 115 | ZOU Y C, WANG P, ZHANG A P, et al. Covalent organic framework-incorporated nanofibrous membrane as an intelligent platform for wound dressing[J]. ACS Appl Mater Interfaces, 2022, 14(7): 8680-8692. |
| 116 | WANG S B, CHEN Z X, GAO F, et al. Remodeling extracellular matrix based on functional covalent organic framework to enhance tumor photodynamic therapy[J]. Biomaterials, 2020, 234: 119772. |
| 117 | WANG K, ZHANG Z, LIN L, et al. Cyanine-assisted exfoliation of covalent organic frameworks in nanocomposites for highly efficient chemo-photothermal tumor therapy[J]. ACS Appl Mater Interfaces, 2019, 11(43): 39503-39512. |
| 118 | GUAN Q, FU D D, LI Y A, et al. BODIPY-decorated nanoscale covalent organic frameworks for photodynamic therapy[J]. Iscience, 2019, 14: 180-198. |
| 119 | TONG X N, GAN S J, WU J H, et al. A nano-photosensitizer based on covalent organic framework nanosheets with high loading and therapeutic efficacy[J]. Nanoscale, 2020, 12(13): 7376-7382. |
| 120 | WANG W X, SONG Y T, CHEN J Y, et al. Polyoxometalate-covalent organic framework hybrid materials for pH-responsive photothermal tumor therapy[J]. J Mater Chem B, 2022, 10(7): 1128-1135. |
| 121 | TAN J, NAMUANGRUK S, KONG W F, et al. Manipulation of amorphous-to-crystalline transformation: towards the construction of covalent organic framework hybrid microspheres with NIR photothermal conversion ability[J]. Angew Chem Int Ed, 2016, 55(45): 13979-13984. |
| 122 | CAI L H, HU C L, LIU S N, et al. Covalent organic framework-titanium oxide nanocomposite for enhanced sonodynamic therapy[J]. Bioconjugate Chem, 2021, 32(4): 661-666. |
| 123 | ZHOU L L, GUAN Q, LI W Y, et al. A ferrocene-functionalized covalent organic framework for enhancing chemodynamic therapy via redox dyshomeostasis[J]. Small, 2021, 17(32): 2101368. |
| 124 | GUAN Q, ZHOU L L, LI Y A, et al. Nanoscale covalent organic framework for combinatorial antitumor photodynamic and photothermal therapy[J]. ACS Nano, 2019, 13(11): 13304-13316. |
| 125 | GAN S J, TONG X N, ZHANG Y, et al. Covalent organic framework-supported molecularly dispersed near-infrared dyes boost immunogenic phototherapy against tumors[J]. Adv Funct Mater, 2019, 29(46): 1902752. |
| 126 | DONG X J, LI W Y, GUAN Q, et al. A CuS- and BODIPY-loaded nanoscale covalent organic framework for synergetic photodynamic and photothermal therapy[J]. Chem Commun, 2022, 58(14): 2387-2390. |
| 127 | GAO P, WEI R Y, LIU X H, et al. Covalent organic framework-engineered polydopamine nanoplatform for multimodal imaging-guided tumor photothermal-chemotherapy[J]. Chem Commun, 2021, 57(46): 5646-5649. |
| 128 | FENG J, REN W X, KONG F, et al. Nanoscale covalent organic framework for the low-temperature treatment of tumor growth and lung metastasis[J]. Sci China Mater, 2022, 65(4): 1122-1133. |
| 129 | WANG S L, PANG Y, HU S Y, et al. Copper sulfide engineered covalent organic frameworks for pH-responsive chemo/photothermal/chemodynamic synergistic therapy against cancer[J]. Chem Eng J, 2023, 451: 138864. |
| 130 | LOU H, CHU L C, ZHOU W B, et al. A diselenium-bridged covalent organic framework with pH/GSH/photo-triple-responsiveness for highly controlled drug release toward joint chemo/photothermal/chemodynamic cancer therapy[J]. J Mat Chem B, 2022, 10(39): 7955-7966. |
| [1] | Hao FU, Wan-Qi XIONG, Zhen WANG, Ai-Hong DUAN, Li-Ming YUAN. Covalent Organic Framework Material Derivative of Chiral Camphor Used as High Performance Liquid Chromatography Stationary Phase for Resolution of Racemates [J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1371-1381. |
| [2] | Lin-Jie SHANG, Jiang LIU, Ya-Qian LAN. Covalent Organic Framework Materials for Photo/ Electrocatalytic Carbon Dioxide Reduction [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 559-584. |
| [3] | WANG Yuting,YANG Tianyi,ZHANG Yinghui. Application of Porphyrin-Based Framework Materials on Photocatalysis [J]. Chinese Journal of Applied Chemistry, 2020, 37(6): 611-619. |
| [4] | FU Chang'e, CHEN Wan, DAI Zhaoxia, XIANG Qizhi. Adsorption of Two Anionic Organic Dyes Methyl Orange and Alizarin Green Using a Magnetic Covalent Organic Frameworks [J]. Chinese Journal of Applied Chemistry, 2018, 35(5): 594-599. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||