
Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (9): 1321-1344.DOI: 10.19894/j.issn.1000-0518.210521
• Review • Next Articles
Ting WANG1,2, Qi WEI1,2, Qiang FU1,2, Wei LI1(), Shi-Wei WANG1,2(
)
Received:
2021-11-01
Accepted:
2022-02-22
Published:
2022-09-01
Online:
2022-09-08
Contact:
Wei LI,Shi-Wei WANG
About author:
wswjldx2004@163.comSupported by:
CLC Number:
Ting WANG, Qi WEI, Qiang FU, Wei LI, Shi-Wei WANG. Review of Perovskite Photovoltaic Cell Encapsulation Material and Technology[J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1321-1344.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210521
Fig.3 (a)Package with thermoplastic sealant(Surlyn60); (b) Package with ultraviolet curing adhesive(Three bond); (c) Package with UV curable adhesive; (d) Package with polyimide tape and UV curable adhesive; (e) Use polyimide tape as primary seal, UV curable adhesive glass as secondary seal, and the most additional edge seal of three adhesive; (f) Unpacked blank sample[62]
Fig.5 Pictures taken under a solar lamp of the 1st generation encapsulated PSCs in (a) Ethylene Vinyl Acetate(EVA) ; (b) Surlyn; (c) 3M′s Polyolefin after 20 hours at 120 ℃-100% relative humidity. Another set of pictures taken under the lamp of the 2nd generation encapsulated PSCs in (d) “CVF” Polyolefin with 20 MPa elastic modulus and (e) “ENLIGHT” Polyolefin with 7 MPa elastic modulus after 1024 h aging at 85 ℃ in ambient. The top protective ITOs are outlined in (b) and (e) as dash rectangles[64]
Fig.7 The schematic of encapsulation structure of (a) UVCA with paraffin and (b) UVCA without paraffin. The two-sided photo-image of device encapsulated by UVCA with paraffin of (c) and (e). The two-sided photo-image of device encapsulated by UVCA without paraffin of (d) and (f)[68]
Fig.8 Schematic illustration(top row)of glass-to-glass encapsulation of perovskite solar cell; (a) Perovskite solar cell on FTO glass substrate; (b) Epoxy edge sealant dispensed cover glass; (c) Stacking and UV curing. Actual photographs at respective stages are shown in the bottom row[69]
Fig.11 (a) Layouts used to measure the degradation of calcium sensors (left) and perovskite solar cells (PSC, right). Calcium test devices had an architecture of glass/ITO/calcium/adhesive/barrier, and PSCs had a structure of glass/ITO/SnO2/Al2O3/MAPbI3/Spiro-OMeTAD/Au/adhesive/barrier. Different barriers were tested including PET, glass, and ultra-high permeation barrier films(UHPBF). (b) Photograph of flexible PET, UHPBF-R, and UHPBF-S barriers, and rigid glass barrier. Scanning electron microscopy (SEM) of (c) PET/ZTO/ORMOCER/ZTO (UHPB F-R) and (d) PEN/ZTO/ORMOCER/ZTO/ORMOCER/ZTO/SiO x C y Hz (UHPBF-S) barriers[82]
Fig.14 (a) The scheme of the encapsulation of printable PSCs based on hot melt films and glass sheets; (b) The digital images of the encapsulated cells[89]
Fig.23 Schematic of the FTO/bl-TiO2/mp-TiO2/MAPbI3/Spiro-OMeTAD/Au architecture with the ALD-Al2O3 encapsulation layer proposed in this work (not to scale)[101]
Fig.24 (a) Structure schematic diagram of the perovskite solar cell and cross-section SEM image of perovskite solar cell with the encapsulation layer; (b) TEM image of the barrier layer on the perovskite solar cells[103]
Fig.25 (a) A schematic of the fabrication and testing routine used to create perovskite solar cells incorporating a PVP/epoxy encapsulation; (b) Device architecture showing all layers, together with their approximate thicknesses[104]
Fig.27 (a) Device structure of perovskite solar cells and illustration of perovskite decomposition; (b) Protection mechanism of encapsulation layers in perovskite solar cells and the layer structures of single composite and double composite encapsulation layers[107]
聚合物封装材料 Polymer encapsulation materials | 封装温度 Encapsulation temperature/℃ | 成本 Cost($/kg) | 参考文献 Ref. |
---|---|---|---|
PIB | 90~160 | 0.22~6.8 | [ |
EVA | 140~150 | 3.3~4.7 | [ |
Surlyn | 140 | 7.06(Surlyn DuPont 1702?1) | [ |
POE | 150 | 1.85(DuPont 8150) | [ |
UV curable resin | 20 | 145 | [ |
TPU | 80~140 | 4.87(TPU 460 Bayer) | [ |
Table 1 Comparison of different polymer packaging materials
聚合物封装材料 Polymer encapsulation materials | 封装温度 Encapsulation temperature/℃ | 成本 Cost($/kg) | 参考文献 Ref. |
---|---|---|---|
PIB | 90~160 | 0.22~6.8 | [ |
EVA | 140~150 | 3.3~4.7 | [ |
Surlyn | 140 | 7.06(Surlyn DuPont 1702?1) | [ |
POE | 150 | 1.85(DuPont 8150) | [ |
UV curable resin | 20 | 145 | [ |
TPU | 80~140 | 4.87(TPU 460 Bayer) | [ |
Fig.29 Long-term stability test of the flexible PSCs left in encapsulated in cylindrical type and without encapsulation(a-d). Photographs of the cylindrical type encapsulated device from different angles(e-g)[114]
Fig.30 Schematic illustration showing (A) the mixing of the FA-based perovskite precursor solution and the silica precursors in “one pot”, (B) the formation of silica oligomers via the hydrolysis reaction of TEOS with water and (C) the formation process of the FA-based perovskite film consisting of individual silica-encapsulated grains from the silica-oligomers-containing precursor solution[115]
Fig.31 (a) SEM image of cross section of the semitransparent solar cell with the layer sequence: Glass/ITO/PEDOT:PSS/ MAPbI3/PCBM/AZO/SnO x /Ag/SnO x; (b)Representative J-V characteristics measured in the forward and reverse direction. Note, current density values have been corrected for spectral mismatch of our AM1.5 light source by using external quantum efficiency (EQE) data. The inset shows the corresponding photovoltaic parameters[116]
Fig.33 Ex situ UV-Vis absorption spectra of perovskite film (a), perovskite/spiro-OMeTAD film (b), perovskite/PI tape film (c) and perovskite/spiro-OMeTAD/PI tape film (d) after immersion in DI water for different time[119]
1 | FROST J M, BUTLER K T, BRIVIO F, et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells[J]. Nano Lett, 2014, 14(5): 2584-2590. |
2 | KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J Am Chem Soc, 2009, 131(17): 6050-6051. |
3 | JEONG J, KIM M, SEO J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells[J]. Nature, 2021, 592(7854): 381-385. |
4 | YE T, HOU Y, NOZARIASBMARZ A, et al. Cost-effective high-performance charge-carrier-transport-layer-free perovskite solar cells achieved by suppressing ion migration[J]. ACS Energy Lett, 2021, 6 (9): 3044-3052. |
5 | ZHOU Q, DUAN J, DU J, et al. Tailored lattice “tape” to confine tensile interface for 11.08%-efficiency all-inorganic CsPbBr3 perovskite solar cell with an ultrahigh voltage of 1.702 V[J]. Adv Sci (Weinh), 2021, 8(19): 2101418-2101426. |
6 | TONG G, SON D Y, ONO L K, et al. Removal of residual compositions by powder engineering for high efficiency formamidinium-based perovskite solar cells with operation lifetime over 2000 h[J]. Nano Energy, 2021, 87: 106152-106161. |
7 | ZHU J, PARK S, GONG O Y, et al. Formamidine disulfide oxidant as a localized electron scavenger for >20% perovskite solar cell modules[J]. Energy Environ Sci, 2021, 14(9): 4903-4914. |
8 | SHI L, BUCKNALL M P, YOUNG T L, et al. Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells[J]. Science, 2020, 368(6497): eaba2412. |
9 | XIAO K, HAN Q, GAO Y, et al. Simultaneously enhanced moisture tolerance and defect passivation of perovskite solar cells with cross-linked grain encapsulation[J]. J Energy Chem, 2021, 56: 455-462. |
10 | JIANG Q, ZHANG L Q, WANG H L, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells[J]. Nat Energy, 2016, 2(1): 1-7. |
11 | YANG D, ZHOU X, YANG R X, et al. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells[J]. Energy Environ Sci, 2016, 9(10): 3071-3078. |
12 | YOU J B, HONG Z, YANG Y M, et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility[J]. ACS Nano, 2014, 8(2): 1674-1680. |
13 | LIU D Y, KELLY T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nat Photonics, 2013, 8(2): 133-138. |
14 | MA S H, PANG S Z, DONG H, et al. Stability improvement of perovskite solar cells by the moisture-resistant PMMA: Spiro-OMeTAD hole transport layer[J]. Polymers, 2022, 14(2): 343-353. |
15 | HUANG C, LIU C J, DI Y X, et al. Efficient planar perovskite solar cells with reduced hysteresis and enhanced open circuit voltage by using PW12-TiO2 as electron transport layer[J]. ACS Appl Mater Interfaces, 2016, 8(13): 8520-8526. |
16 | BI D Q, TRESS W, DAR M I, et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites[J]. Sci Adv, 2016, 2(1): e1501170-e1501170. |
17 | ALISHAH H M, CHOI F P G, KURUOGLU F, et al. Improvement of fill factor by the utilization of Zn-doped PEDOT∶PSS hole-transport layers for p-i-n planar type of perovskite solar cells[J]. Electrochim Acta, 2021, 388: 138658-138669. |
18 | DONG H, PANG S Z, ZHANG Y, et al. Improving electron extraction ability and device stability of perovskite solar cells using a compatible PCBM/AZO electron transporting bilayer[J]. Nanomaterials (Basel), 2018, 8(9): 720-729. |
19 | MENG L, SUN C K, WANG R, et al. Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%[J]. J Am Chem Soc, 2018, 140(49): 17255-17262. |
20 | HU Y Q, SHAN Y S, YU Z L, et al. Incorporation of γ-aminobutyric acid and cesium cations to formamidinium lead halide perovskites for highly efficient solar cells[J]. J Energy Chem, 2022, 64: 561-567. |
21 | ZHANG J J, LI X H, WANG L X, et al. Enhanced performance of CH3NH3PbI3 perovskite solar cells by excess halide modification[J]. Appl Surf Sci, 2021, 564: 150464-150473. |
22 | LEE J W, KIM D H, KIM H S, et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell[J]. Adv Energy Mater, 2015, 5(20): 1501310-1501318. |
23 | SALIBA M, MATSUI T, DOMANSKI K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance[J]. Science, 2016, 354(6309): 206-209. |
24 | ORANSKAIA A, SCHWINGENSCHLÖGL U. Suppressing X-migrations and enhancing the phase stability of cubic FAPbX3(X=Br, I)[J]. Adv Energy Mater, 2019, 9(32): 1901411-1901422. |
25 | WEI Q, BI H, YAN S, et al. Morphology and interface engineering for organic metal halide perovskite-based photovoltaic cells[J]. Adv Mater Interfaces, 2018, 5(14): 1800248-1800264. |
26 | WANG S W, YAN S, WANG M, et al. Construction of nanowire CH3NH3PbI3-based solar cells with 17.62% efficiency by solvent etching technique[J]. Sol Energy Mater Sol Cells, 2017, 167: 173-177. |
27 | KONG W C, WANG S W, LI F, et al. Ultrathin perovskite monocrystals boost the solar cell performance[J]. Adv Energy Mater, 2020, 10(34): 2000453-2000460. |
28 | SONG T Y, GAO L F, WEI Q, et al. Study on the effect of chlorine on the growth of CH3NH3PbI3- xClx crystals[J]. Mater Res Express, 2020, 7(1): 015522-015527. |
29 | SONG T Y, BI H, WEI Q, et al. Study on the movements of organometallic halide perovskite crystals on their films[J]. ChemistrySelect, 2019, 4(47): 13904-13907. |
30 | LIU F Y, ZUO X K, WANG K, et al. Improving performance and stability of planar perovskite solar cells through passivation effect with green additives[J]. Solar RRL, 2021, 5(4): 2000732-2000742. |
31 | 李晓茵, 周传聪, 王英华, 等. 锡基钙钛矿太阳电池光吸收材料[J]. 化学进展, 2019, 31(6): 882-893. |
LI X Y, ZHOU C C, WANG Y H, et al. Tin based perovskite solar cell light absorbing material[J]. Prog Chem, 2019, 31(6): 882-893. | |
32 | SAPAROV B, HONG F, SUN J P, et al. Thin-film preparation and characterization of Cs3Sb2I9: a leadfree layered perovskite semiconductor[J]. Chem Mater, 2015, 22(16): 5622-5632. |
33 | XU Z H, ZHANG C, YU F Y, et al. Synthesis of Sb(V) complexes with pyridyl cations and application for lead-free perovskite solar cells[J]. Chem Lett, 2020, 49(8): 944-946. |
34 | SHAO Z, LE MERCIER T, MADEC M B, et al. Exploring AgBixI3 x+1 semiconductor thin films for lead-free perovskite solar cells[J]. Mater Design, 2018, 141: 81-87. |
35 | ÖZ S, HEBIG J C, JUNG E, et al. Zero-dimensional (CH3NH3)3Bi2I9 perovskite for optoelectronic applications[J]. Sol Energy Mater Sol Cells, 2016, 158: 195-201. |
36 | SLAVNEY A H, HU T, LINDENBERG A M, et al. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications[J]. J Am Chem Soc, 2016, 138(7): 2138-2141. |
37 | JU M G, CHEN M, ZHOU Y Y, et al. Earth-abundant nontoxic titanium(Ⅳ)-based vacancy-ordered double perovskite halides with tunable 1.0 to 1.8 eV bandgaps for photovoltaic applications[J]. ACS Energy Lett, 2018, 3(2): 297-304. |
38 | HARIKESH P C, MULMUDI H K, GHOSH B, et al. Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics[J]. Chem Mater, 2016, 28(20): 7496-7504. |
39 | KRISHNAMOORTHY T, DING H, YAN C, et al. Lead-free germanium iodide perovskite materials for photovoltaic applications[J]. J Mater Chem A, 2015, 3(47): 23829-23832. |
40 | CORTECCHIA D, DEWI H A, YIN J, et al. Lead-free MA2CuClxBr4- x hybrid perovskites[J]. Inorg Chem, 2016, 55(3): 1044-1052. |
41 | KIM J H, LIANG P W, WILLIAMS S T, et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer[J]. Adv Mater, 2015, 27(4): 695-701. |
42 | LIU X, WU T H, CHEN J Y, et al. Templated growth of FASnI3 crystals for efficient tin perovskite solar cells[J]. Energy Environl Sci, 2020, 13(9): 2896-2902. |
43 | YANG Y, YOU J. Make perovskite solar cells stable[J]. Nature, 2017, 544(7649): 155-156. |
44 | LI W, ZHANG W, VAN REENEN S, et al. Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification[J]. Energy Environ Sci, 2016, 9(2): 490-498. |
45 | NIU T Q, LU J, TANG M C, et al. High performance ambient-air-stable FAPbI3 perovskite solar cells with molecule-passivated Ruddlesden-Popper/3D heterostructured film[J]. Energy Environ Sci, 2018, 11(12): 3358-3366. |
46 | YOU J, MENG L, SONG T B, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers[J]. Nat Nanotechnol, 2016, 11(1): 75-81. |
47 | HUANG J B, TAN S Q, LUND P D, et al. Impact of H2O on organic-inorganic hybrid perovskite solar cells[J]. Energy Environ Sci, 2017, 10(11): 2284-2311. |
48 | HU Y Q, QIU T, BAI F, et al. Enhancing moisture-tolerance and photovoltaic performances for FAPbI3 by bismuth incorporation[J]. J Mater Chem A, 2017, 5(48): 25258-25265. |
49 | KANG H, KIM G, KIM J, et al. Bulk-heterojunction organic solar cells: five core technologies for their commercialization[J]. Adv Mater, 2016, 28(36): 7821-7861. |
50 | YANG Y F, LUO J D, LUO N Q, et al. Effect of Cs+ fraction on photovoltaic performance of perovskite solar cells based on CsxMA1- xPbI3 absorption layers[J]. J Electron Mater, 2020, 49(12): 7044-7053. |
51 | RAMOS F J, CORTES D, AGUIRRE A, et al. Fabrication and encapsulation of perovskites sensitized solid state solar cells: 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)[C]. Denver, CO, USA: IEEE, 2014: 2584-2587. |
52 | JAGADAMMA L K, BLASZCZYK O, SAJJAD M T, et al. Efficient indoor p-i-n hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layers[J]. Sol Energy Mater Sol Cells, 2019, 201: 110071-110080. |
53 | DUALEH A, TETREAULT N, MOEHL T, et al. Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells[J]. Adv Funct Mater, 2014, 24(21): 3250-3258. |
54 | BELLA F, GRIFFINI G, CORREA-BAENA J P, et al. Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers[J]. Science, 2016, 354(6309): 203-206. |
55 | KIM Y, KIM H, GRAHAM S, et al. Durable polyisobutylene edge sealants for organic electronics and electrochemical devices[J]. Sol Energy Mater Sol Cells, 2012, 100: 120-125. |
56 | LI J L, XIA R, QI W J, et al. Encapsulation of perovskite solar cells for enhanced stability: structures, materials and characterization[J]. J Power Sources, 2021, 485: 229313-229327. |
57 | CHANG C Y, CHOU C T, LEE Y J, et al. Thin-film encapsulation of polymer-based bulk-heterojunction photovoltaic cells by atomic layer deposition[J]. Org Electron, 2009, 10(7): 1300-1306. |
58 | HUANG Z Q, LONG J, DAI R Y, et al. Ultra-flexible and waterproof perovskite photovoltaics for washable power source applications[J]. Chem Commun, 2021, 57(51): 6320-6323. |
59 | JIANG Q, ZHAO Y, ZHANG X W, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nat Photonics, 2019, 13(7): 460-466. |
60 | CHOI J M, SUKO H, KIM K, et al. Multi-walled carbon nanotube-assisted encapsulation approach for stable perovskite solar cells[J]. Molecules, 2021, 26(16): 5060-5069. |
61 | ANGMO D, GEVORGYAN S A, LARSEN-OLSEN T T, et al. Scalability and stability of very thin, roll-to-roll processed, large area, indium-tin-oxide free polymer solar cell modules[J]. Org Electron, 2013, 14(3): 984-994. |
62 | MATTEOCCI F, CINA L, LAMANNA E, et al. Encapsulation for long-term stability enhancement of perovskite solar cells[J]. Nano Energy, 2016, 30: 162-172. |
63 | SHI L, YOUNG T L, KIM J, et al. Accelerated lifetime testing of organic-inorganic perovskite solar cells encapsulated by polyisobutylene[J]. ACS Appl Mater Interfaces, 2017, 9(30): 25073-25081. |
64 | CHEACHAROEN R, BOYD C C, BURKHARD G F, et al. Encapsulating perovskite solar cells to withstand damp heat and thermal cycling[J]. Sustainable Energy Fuels, 2018, 2(11): 2398-2406. |
65 | BUSH K A, PALMSTROM A F, YU Z J, et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability[J]. Nat Energy, 2017, 2(4): 1-7. |
66 | LIU W S, WANG Z G. Comparative study of silicon-containing cycloaliphatic epoxides between different chemical structures and curing mechanisms for potential light-emitting diode encapsulation applications[J]. Polym Int, 2013, 62(3): 512-522. |
67 | DONG Q, LIU F, WONG M K, et al. Encapsulation of perovskite solar cells for high humidity conditions[J]. ChemSusChem, 2016, 9(18): 2597-2603. |
68 | MA S, BAI Y, WANG H, et al. 1000 h operational lifetime perovskite solar cells by ambient melting encapsulation[J]. Adv Energy Mater, 2020, 10(9): 1902472-1902479. |
69 | RAMASAMY E, KARTHIKEYAN V, RAMESHKUMAR K, et al. Glass-to-glass encapsulation with ultraviolet light curable epoxy edge sealing for stable perovskite solar cells[J]. Mater Lett, 2019: 25051-25054. |
70 | MARTINS J, EMAMI S, MADUREIRA R, et al. Novel laser-assisted glass frit encapsulation for long-lifetime perovskite solar cells[J]. J Mater Chem A, 2020, 8(38): 20037-20046. |
71 | WEERASINGHE H C, DKHISSI Y, SCULLY A D, et al. Encapsulation for improving the lifetime of flexible perovskite solar cells[J]. Nano Energy, 2015, 18: 118-125. |
72 | BONOMO M, TAHERI B, BONANDINI L, et al. Thermosetting polyurethane resins as low-cost, easily scalable, and effective oxygen and moisture barriers for perovskite solar cells[J]. ACS Appl Mater Interfaces, 2020, 12(49): 54862-54875. |
73 | PARK H H. Inorganic materials by atomic layer deposition for perovskite solar cells[J]. Nanomaterials, 2021, 11(1): 88-108. |
74 | SAMADPOUR M, HEYDARI M, MOHAMMADI M, et al. Water repellent room temperature vulcanized silicone for enhancing the long-term stability of perovskite solar cells[J]. Solar Energy, 2021, 218: 28-34. |
75 | HUANG Z Q, HU X T, LIU C, et al. Water-resistant and flexible perovskite solar cells via a glued interfacial layer[J]. Adv Funct Mater, 2019, 29(37): 1902629-1902636. |
76 | YOO J S, HAN G S, LEE S, et al. Dual function of a high-contrast hydrophobic-hydrophilic coating for enhanced stability of perovskite solar cells in extremely humid environments[J]. Nano Res, 2017, 10(11): 3885-3895. |
77 | ORESKI G, OMAZIC A, EDER G C, et al. Properties and degradation behaviour of polyolefin encapsulants for photovoltaic modules[J]. Prog Photovoltaics: Res Appl, 2020, 28(12): 1277-1288. |
78 | KEMPE M D, PANCHAGADE D, REESE M O, et al. Modeling moisture ingress through polyisobutylene-based edge-seals[J]. Prog Photovoltaics: Res Appl, 2015, 23(5): 570-581. |
79 | ASLAN E, ATES TURKMEN T, ALTURK E. High stability perovskite solar cells under ambient conditions[J]. IET Renewable Power Generation, 2020, 14(16): 3160-3163. |
80 | KEMPE M D, JORGENSEN G J, TERWILLIGER K M, et al. Acetic acid production and glass transition concerns with ethylene-vinyl acetate used in photovoltaic devices[J]. Sol Energy Mater Sol Cells, 2007, 91(4): 315-329. |
81 | SOO Y H, NG S A, WONG Y H, et al. Thermal stability enhancement of perovskite MAPbI3 film at high temperature (150 ℃) by PMMA encapsulation[J]. J Mater Sci Mater Electron, 2021, 32(11): 14885-14900. |
82 | CASTRO-HERMOSA S, TOP M, DAGAR J, et al. Quantifying performance of permeation barrier-encapsulation systems for flexible and glass-based electronics and their application to perovskite solar cells[J]. Adv Electronic Mater, 2019, 5(10): 1800978-1800988. |
83 | SHI J D, GE W Y, GAO W X, et al. Enhanced thermal stability of halide perovskite CsPbX3 nanocrystals by a facile TPU encapsulation[J]. Adv Optical Mater, 2019, 8(4): 1901516-1901524. |
84 | WU J H, CUI Y Q, YU B C, et al. A simple way to simultaneously release the interface stress and realize the inner encapsulation for highly efficient and stable perovskite solar cells[J]. Adv Funct Mater, 2019, 29(49): 1905336-1905346. |
85 | BI H, LIU F Y, WANG M, et al. Construction of ultra-stable perovskite-polymer fibre membranes by electrospinning technology and its application to light-emitting diodes[J]. Polym Int, 2020, 70(1): 90-95. |
86 | JIANG Y, QIU L B, JUAREZ-PEREZ E J, et al. Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation[J]. Nat Energy, 2019, 4(7): 585-593. |
87 | MCKENNA B, TROUGHTON J R, WATSON T M, et al. Enhancing the stability of organolead halide perovskite films through polymer encapsulation[J]. RSC Adv, 2017, 7(52): 32942-32951. |
88 | KIM H, LEE J, KIM B, et al. Enhanced stability of MAPbI3 perovskite solar cells using poly(p-chloro-xylylene) encapsulation[J]. Sci Rep, 2019, 9(1): 1-6. |
89 | FU Z Y, XU M, SHENG Y S, et al. Encapsulation of printable mesoscopic perovskite solar cells enables high temperature and long-term outdoor stability[J]. Adv Funct Mater, 2019, 29(16): 1809129-1809135. |
90 | DENG K M, LIU Z Z, XIN Y, et al. PbI2/CH3NH3Cl mixed precursor-induced micrometer-scale grain perovskite film and room-temperature film encapsulation toward high efficiency and stability of planar perovskite solar cells[J]. Adv Mater Interfaces, 2018, 5(15): 1800499-1800506. |
91 | IDIGORAS J, APARICIO F J, CONTRERAS-BERNAL L, et al. Enhancing moisture and water resistance in perovskite solar cells by encapsulation with ultrathin plasma polymers[J]. ACS Appl Mater Interfaces, 2018, 10(14): 11587-11594. |
92 | WEN X R, WU J M, YE M D, et al. Interface engineering via an insulating polymer for highly efficient and environmentally stable perovskite solar cells[J]. Chem Commun, 2016, 52(76): 11355-11358. |
93 | HWANG I, JEONG I, LEE J, et al. Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation[J]. ACS Appl Mater Interfaces, 2015, 7(31): 17330-17336. |
94 | CHEN S S, DENG Y H, XIAO X, et al. Preventing lead leakage with built-in resin layers for sustainable perovskite solar cells[J]. Nat Sustain, 2021, 4(7): 636-643. |
95 | LIU Z Y, SUN B, SHI T L, et al. Enhanced photovoltaic performance and stability of carbon counter electrode based perovskite solar cells encapsulated by PDMS[J]. J Mater Chem A, 2016, 4(27): 10700-10709. |
96 | FUMANI N M R, ROGHABADI F A, ALIDAEI M, et al. Prolonged lifetime of perovskite solar cells using a moisture-blocked and temperature-controlled encapsulation system comprising a phase change material as a cooling agent[J]. ACS Omega, 2020, 5(13): 7106-7114. |
97 | JANG J H, KIM B J, KIM J H, et al. A novel approach for the development of moisture encapsulation poly(vinyl alcohol-co-ethylene) for perovskite solar cells[J]. ACS Omega, 2019, 4(5): 9211-9218. |
98 | PARK C, CHOI J, MIN J, et al. Suppression of oxidative degradation of tin-lead hybrid organometal halide perovskite solar cells by Ag doping[J]. ACS Energy Lett, 2020, 5(10): 3285-3294. |
99 | GHOSH S, SINGH R, SUBBIAH A S, et al. Enhanced operational stability through interfacial modification by active encapsulation of perovskite solar cells[J]. Appl Phys Lett, 2020, 116(11): 113502-113507. |
100 | CHOI E Y, KIM J, LIM S, et al. Enhancing stability for organic-inorganic perovskite solar cells by atomic layer deposited Al2O3 encapsulation[J]. Sol Energy Mater Sol Cells, 2018, 188: 37-45. |
101 | RAMOS F J, MAINDRON T, BÉCHU S, et al. Versatile perovskite solar cell encapsulation by low-temperature ALD-Al2O3 with long-term stability improvement[J]. Sustain Energy Fuels, 2018, 2(11): 2468-2479. |
102 | CHANG C Y, LEE K T, HUANG W K, et al. High-performance, air-stable, low-temperature processed semitran-sparent perovskite solar cells enabled by atomic layer deposition[J]. Chem Mater, 2015, 27(14): 5122-5130. |
103 | WANG H R, ZHAO Y P, WANG Z Y, et al. Hermetic seal for perovskite solar cells: an improved plasma enhanced atomic layer deposition encapsulation[J]. Nano Energy, 2020, 69: 104375-104383. |
104 | WONG-STRINGER M, GAME O S, SMITH J A, et al. High-performance multilayer encapsulation for perovskite photovoltaics[J]. Adv Energy Mater, 2018, 8(24): 1801234-1801244. |
105 | LEE Y I, JEON N J, KIM B J, et al. A low-temperature thin-film encapsulation for enhanced stability of a highly efficient perovskite solar cell[J]. Adv Energy Mater, 2018, 8(9): 1701928-1701935. |
106 | KIM B J, JANG J H, KIM J, et al. Efficiency and stability enhancement of organic-inorganic perovskite solar cells through micropatterned norland optical adhesive and polyethylene terephthalate encapsulation[J]. Mater Today Commun, 2019, 20: 100537-100543. |
107 | LV Y F, ZHANG H, LIU R Q, et al. Composite encapsulation enabled superior comprehensive stability of perovskite solar cells[J]. ACS Appl Mater Interfaces, 2020, 12(24): 27277-27285. |
108 | ZHAO O, DING Y, PAN Z, et al. Open-air plasma-deposited multilayer thin-film moisture barriers[J]. ACS Appl Mater Interfaces, 2020, 12(23): 26405-26412. |
109 | 盖德化工网. 美国进口低凝胶Surlyn1702-1沙林树脂[EB/OL]. (2021-12-31) [2021-12-31]. https://china.guidechem.com/trade/pdetail7863598.html. |
Guide chemical network. Low gel Surlyn1702-1 sarin resin imported from USA[EB/OL]. (2021-12-31) [2021-12-31]. https://china.guidechem.com/trade/pdetail7863598.html. | |
110 | 盖德化工网. POE美国杜邦8150[EB/OL]. (2021-12-31) [2021-12-31]. https://china.guidechem.com/trade/pdetail22628271.html. |
Guide chemical network. Poe DuPont 8150[EB/OL]. (2021-12-31) [2021-12-31]. https://china.guidechem.com/trade/pdetail22628271.html. | |
111 | 中国供应商. 高弹性耐热聚氨酯高透明TPU德国拜耳460热熔塑胶[EB/OL]. (2021-12-31) [2021-12-31]. https://www.china.cn/tpu/4776071144.html. |
Chinese supplier. High elastic heat-resistant polyurethane high transparent TPU Germany Bayer 460 hot melt plastic[EB/OL]. (2021-12-31) [2021-12-31]. https://www.china.cn/tpu/4776071144.html. | |
112 | EMAMI S, MARTINS J, IVANOU D, et al. Advanced hermetic encapsulation of perovskite solar cells: the route to commercialization[J]. J Mater Chem A, 2020, 8(5): 2654-2662. |
113 | MENG X C, CAI Z R, ZHANG Y Y, et al. Bio-inspired vertebral design for scalable and flexible perovskite solar cells[J]. Nat Commun, 2020, 11(1): 1-10. |
114 | PANDEY M, KAPIL G, SAKAMOTO K, et al. Efficient, hysteresis free, inverted planar flexible perovskite solar cells via perovskite engineering and stability in cylindrical encapsulation[J]. Sustain Energy Fuels, 2019, 3(7): 1739-1748. |
115 | LIU T H, ZHOU Y Y, LI Z, et al. Stable formamidinium-based perovskite solar cells via in situ grain encapsulation[J]. Adv Energy Mater, 2018, 8(22): 1800232-1800240. |
116 | ZHAO J, BRINKMANN K O, HU T, et al. Self-encapsulating thermostable and air-resilient semitransparent perovskite solar cells[J]. Adv Energy Mater, 2017, 7(14): 1602599-1602606. |
117 | YIN J, CUI J W, ZHOU H W, et al. Encapsulation of UV glue, hydrophobicity of binder and carbon electrode enhance the stability of organic-inorganic hybrid perovskite solar cells up to 5 years[J]. Energy Technol, 2020, 8(11): 2000513-2000517. |
118 | AN M W, XING Z, WU B S, et al. Cross-linkable fullerene interfacial contacts for enhancing humidity stability of inverted perovskite solar cells[J]. Rare Met, 2020, 40(7): 1691-1697. |
119 | LI B, WANG M, SUBAIR R, et al. Significant stability enhancement of perovskite solar cells by facile adhesive encapsulation[J]. J Phys Chem C, 2018, 122(44): 25260-25267. |
[1] | Chen-Si-Fan JIAO, Shao‑Bo ZHENG, Peng-Jun XU, Wei WANG, Takebe HIROMICHI, Mukai KUSUHIRO, Zhong-Da YU. Method of Evaluating the Foaming Properties of Surfactant Solutions— Real Sphere Bubble Method [J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1108-1118. |
[2] | Xin-Wei DU, Wen-Jie ZHAO, Wei HU, Zhao-Yan SUN, Wan-Li LIU, Tian-Lei REN, Ming-Xing FU. Preparation and Properties of Poly(ether ether ketone)/Carbon Nanotube Modified Polypropylene Janus Composite Separator [J]. Chinese Journal of Applied Chemistry, 2022, 39(12): 1862-1869. |
[3] | He LI, Gong LI, Xue GONG, Ming-Bo RUAN, Ce HAN, Ping SONG, Wei-Lin XU. Research on Performance Decay Mechanism of Pt/C Catalyst in Long‑Term ORR Test [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1564-1571. |
[4] | ZHAO Chang-Li, QIN Ming-Gao, DOU Xiao-Qiu, FENG Chuan-Liang. High Mechanical Stability and Osteogenesis of Chiral Supramolecular Hydrogel Induced by Inorganic Nanoparticles [J]. Chinese Journal of Applied Chemistry, 2022, 39(1): 177-187. |
[5] | Ying ZHAO, Yi-Jia SHAO, Luo-Qian LI, Jian-Wei REN, Shi-Jun LIAO. Research Progress on the Degradation Mechanism and Cycle Stability Improvement of Lithium-Rich Cathode Materials [J]. Chinese Journal of Applied Chemistry, 2022, 39(02): 205-222. |
[6] | QIAO Zong-Wen, CHEN Tao. Properties of Pyrenesulfonic Type Sulfonated Polysulfone Cation Exchange Membrane with High Performance Long Side Chain [J]. Chinese Journal of Applied Chemistry, 2021, 38(6): 668-674. |
[7] | WU Zhen-Jiang, HUO Xiao-Wei, LIU Shou-Jun, YANG Song. Preparation and Application of Resin-Free Color Pastes in Water-Based Pigment Systems [J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 212-219. |
[8] | CAO You-Peng, PANG Xuan, XIANG Sheng, WANG Tian-Chang, FENG Li-Dong, BIAN Xin-Chao, LI Gao, CHEN Xue-Si. Solution-Induced Co-crystallization in Poly(lactic acid)/ Substituted Poly(lactic acid) Blends [J]. Chinese Journal of Applied Chemistry, 2021, 38(1): 60-68. |
[9] | QIAO Zongwen, ZHAO Benbo. Properties of Sulfonated Polysulfone Proton Exchange Membranes Based on One-Pot Method [J]. Chinese Journal of Applied Chemistry, 2020, 37(6): 658-665. |
[10] | AN Lulu, MI Jie. Synthesis of Nickel Cobalt Hydroxide and Its Electrochemical Properties [J]. Chinese Journal of Applied Chemistry, 2020, 37(5): 579-586. |
[11] | WEN Pushan, HE Rui, ZHAO Guanglian, LIANG Xing, LEE Myonghoon. Preparation and Properties of Soluble Polyimides as the Liquid Crystal Alignment Layer [J]. Chinese Journal of Applied Chemistry, 2020, 37(12): 0-0. |
[12] | WEN Pushan, HE Rui, ZHAO Guanglian, LIANG Xing, LEE Myonghoon. Preparation and Properties of Soluble Polyimides as the Liquid Crystal Alignment Layer [J]. Chinese Journal of Applied Chemistry, 2020, 37(12): 1403-1410. |
[13] | FU Fengyan, CHENG Jingquan, ZHANG Jie, GAO Zhihua. Recent Development in Ionic Exchange Groups-Based Anion Exchange Membrane [J]. Chinese Journal of Applied Chemistry, 2020, 37(10): 1112-1126. |
[14] | WANG Zhumei,LI Yueming,WAN Detian,ZUO Jianlin,SHEN Zongyang,LI Kai. Preparation and Stability of Silica Coated Bismuth-Based Yellow Pigments [J]. Chinese Journal of Applied Chemistry, 2020, 37(1): 109-116. |
[15] | CHEN Shaodong, WANG Xiaojuan, LI Duanxiu, WANG Zhaoxi, ZHANG Hailu. Preparation and Characterization of Etodolac-Piperazine Salt [J]. Chinese Journal of Applied Chemistry, 2020, 37(1): 103-108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||