Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (4): 513-527.DOI: 10.19894/j.issn.1000-0518.210331
• Review • Previous Articles Next Articles
WANG-Xin, ZHANG-Dong(), DU-Fei()
Received:
2021-07-08
Accepted:
2021-10-19
Published:
2022-04-01
Online:
2022-04-19
Contact:
ZHANG-Dong, DU-Fei
Supported by:
CLC Number:
WANG-Xin, ZHANG-Dong, DU-Fei. Recent Progress of Single⁃Atom Catalytic Materials for Lithium⁃Sulfur Batteries[J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 513-527.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210331
Fig.1 (A) Schematic illustration of the in situ separation and confinement of a platinum precursor in a β-cage followed by thermal treatment[41]; (B) Schematic illustration of the fabrication process of HPC[42]
Fig.2 (A, B) Magnified HAADF-STEM images and (C) energy dispersive X-ray spectroscopy (EDS) elemental mapping results of BiSAs/NC, with C (green), N (blue), and Bi (red)[43]; (D) high-resolution XPS N 1s spectra of Co-N/G and N/G [44]; (E) Schematic illustration of the formation of Fe-SAs/NSC[45]; the normalized XANES spectra and (F) the k3-weighted Fourier transform of EXAFS spectra at Fe K-edge of Fe-SAs/NSC and the reference materials[45]; (G) EXAFS curves between the experimental data and the fit of Fe-SAs/NSC[45]
Fig.3 (A) photograph showing the variation in color of (1) the polysulfide solution after adsorption by (2) PNC and (3) Fe-PNC [60]; (B) Energy profiles for the sulfur reduction on N-C and Fe-N4-C substrates (the inset in shows the optimized adsorption configurations)[61]; Energy profiles for the dissociation of the Li2S cluster on (C) N-C and (D) Fe-N4-C, The green, yellow, silver and brown balls represent Li, S, N and Fe atoms, respectively[61]; (E) CV curves of Fe-N/MHCS symmetric cells in 0.5 mol/L Li2S6 electrolyte at a scan rate of 1 mV/s[61]; (F) Schematic synthesis illustration of the converted-Li2S nanocomposite with SACo catalyst[62]
材料 Material | 硫负载量 Sulphur load/ (mg·cm-2) | 倍率性能 Rate capability/ (mA?h·g-1) | 电流/循环圈数/容量保持率 Current/number of cycles/ capacity retention rate | 参考文献 Ref. |
---|---|---|---|---|
Co-N4@2D/3D carbon | 1 | 1171 (0.2 C)/695(5 C) | 1 C/500/73.5% | [ |
Co?PCNF | 1.7 | 1373.5 (0.2C)/914.3 (2C) | 0.5 C/100/95.5% | [ |
Mn/C?(N, O) | 1.1 | ~1100 (0.2 C)/~500 (4 C) | 1 C/1000/50% | [ |
FeNSC | 1 | 1193 (0.05 C)/550.2 (4 C) | 1 C/1000/53% | [ |
Fe?N/MHCS | 2 | 1110 (0.2 C)/949 (2 C) | 1 C/1000/81.3% | [ |
ZnS and Co-N-C DEB sites | 9 | 0.6 C/6.5 mA·h/cm2 | 0.6 C/100/86.7% | [ |
CoSA?N?C@S | ||||
FeSA?CN | 2.4 | 1123 (0.05 C)/605 (4 C) | [ | |
S?SAV@NG | 2 | 1230 (0.2 C)/645 (3 C) | 0.5 C/400/70.64% | [ |
Table 1 The electrochemical performance of Li?S batteries using SAs as sulfur hosts
材料 Material | 硫负载量 Sulphur load/ (mg·cm-2) | 倍率性能 Rate capability/ (mA?h·g-1) | 电流/循环圈数/容量保持率 Current/number of cycles/ capacity retention rate | 参考文献 Ref. |
---|---|---|---|---|
Co-N4@2D/3D carbon | 1 | 1171 (0.2 C)/695(5 C) | 1 C/500/73.5% | [ |
Co?PCNF | 1.7 | 1373.5 (0.2C)/914.3 (2C) | 0.5 C/100/95.5% | [ |
Mn/C?(N, O) | 1.1 | ~1100 (0.2 C)/~500 (4 C) | 1 C/1000/50% | [ |
FeNSC | 1 | 1193 (0.05 C)/550.2 (4 C) | 1 C/1000/53% | [ |
Fe?N/MHCS | 2 | 1110 (0.2 C)/949 (2 C) | 1 C/1000/81.3% | [ |
ZnS and Co-N-C DEB sites | 9 | 0.6 C/6.5 mA·h/cm2 | 0.6 C/100/86.7% | [ |
CoSA?N?C@S | ||||
FeSA?CN | 2.4 | 1123 (0.05 C)/605 (4 C) | [ | |
S?SAV@NG | 2 | 1230 (0.2 C)/645 (3 C) | 0.5 C/400/70.64% | [ |
Fig.4 (A) CV profiles of the Li-S batteries with unmodified PP, the NG, or M1/NG-modified separators at 0.1 mV/s[71]; (B) Charge-discharge curves of the Li-S batteries at 0.5 C[71]; (C) Voltage gaps of the Li-S batteries with various separators at 600 mA·h/g[71]; (D) CV profiles of the Li-S cell with the Fe1/NG-modified separator, inset: digital photo of the in situ Raman cell; in situ Raman spectra of the Li-S cell with the Fe1/NG-modified separator at different voltages as indicated in (E)[71]
材料 Material | 硫负载量 Sulphur load/(mg·cm-2) | 倍率性能 Rate capability/(mA·h·g-1) | 电流/循环圈数/容量保持率 Current/number of cycles/capacity retention rate | 参考文献 Ref. |
---|---|---|---|---|
1.1 | 1375 (0.2 C)/678 (10 C) | 2 C/1000/55% | [ | |
NC@SA?Co | 1 | 1160 (0.1 C)/582 (5 C) | 2 C/700/59.4% | [ |
1.2 | [ | |||
[ |
Table 2 The electrochemical performance of Li?S batteries using SAs to modify the separator
材料 Material | 硫负载量 Sulphur load/(mg·cm-2) | 倍率性能 Rate capability/(mA·h·g-1) | 电流/循环圈数/容量保持率 Current/number of cycles/capacity retention rate | 参考文献 Ref. |
---|---|---|---|---|
1.1 | 1375 (0.2 C)/678 (10 C) | 2 C/1000/55% | [ | |
NC@SA?Co | 1 | 1160 (0.1 C)/582 (5 C) | 2 C/700/59.4% | [ |
1.2 | [ | |||
[ |
Fig.5 (A) Electron density difference and surface binding energy of graphene, ZnSAs, and N-graphene[78]; (B) Li migration pathways and barriers on ZnSAs[78]; (C - D) In situ observation of Li electrodepositing on KB and ZnSAs[78]; (E) Schematic illustration for the Li-S batteries with celgard and B/2D MOF-Co separators[79]; (F - I) SEM images of the initial and cycled Li anodes treated with B/2D MOF-Co[79]
材料 Materials | 电流密度/电压/循环寿命 Current density (1 mA·cm-2)/ voltage (mV)/cycle life (h) | 锂硫电池的硫负载量 Sulphur Load of lithium?sulfur battery/ (mg·cm-2) | 锂硫电池的电流密度/循环圈数/容量 Current of lithium?sulfur battery /Number of cycles/Capacity(mA?h/g) | 参考文献 Ref. |
---|---|---|---|---|
Co?O?G SA | 1/18/780 | 1 | 0.5 C/1000/915 | [ |
SACo | 0.5/15/1600 | 5.4 | 1 mA/cm2/60/542 | [ |
Zn?HNC | 3/16/1200 | 1.5 | 1 C/300/1149 | [ |
Table 3 The electrochemical performance of Li?S batteries using SAs to modify the anode
材料 Materials | 电流密度/电压/循环寿命 Current density (1 mA·cm-2)/ voltage (mV)/cycle life (h) | 锂硫电池的硫负载量 Sulphur Load of lithium?sulfur battery/ (mg·cm-2) | 锂硫电池的电流密度/循环圈数/容量 Current of lithium?sulfur battery /Number of cycles/Capacity(mA?h/g) | 参考文献 Ref. |
---|---|---|---|---|
Co?O?G SA | 1/18/780 | 1 | 0.5 C/1000/915 | [ |
SACo | 0.5/15/1600 | 5.4 | 1 mA/cm2/60/542 | [ |
Zn?HNC | 3/16/1200 | 1.5 | 1 C/300/1149 | [ |
Fig.6 CV curves of the symmetric cells with (A) Li2S6 at a scan rate of 50 mV/s; Potentiostatic discharge profiles of Li2S6 solution at 2.07 V on the CNT substrate using STD-CoPcCl (B) and STD (C) electrolytes; (D) Long-term cycling and (E) rate performance of Li-S batteries[83]
1 | NI S, LIU J, CHAO D, et al. Vanadate-based materials for Li-ion batteries: the search for anodes for practical applications[J]. Adv Energy Mater, 2019, 9(14): 1803324. |
2 | LI P, HWANG J, SUN Y. Nano/microstructured silicon-graphite composite anode for high-energy-density Li-ion battery[J]. ACS Nano, 2019, 13(2): 2624-2633. |
3 | LARCHER D, TARASCON J. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat Chem, 2015, 7(1): 19-29. |
4 | HUANG L, LI J, LIU B, et al. Electrode design for lithium-sulfur batteries: problems and solutions[J]. Adv Funct Mater, 2020, 30(22): 1910375. |
5 | BETZ J, BIEKER G, MEISTER P, et al. Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems[J]. Adv Energy Mater, 2018, 9(6): 1803170. |
6 | LIU X, HUANG J, ZHANG Q, et al. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Adv Mater, 2017, 29(20): 1601759. |
7 | JANA M, XU R, CHENG X. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries[J]. Energy Environ Sci, 2020, 13(4): 1049-1075. |
8 | HOU L, YUAN H, ZHAO C, et al. Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium-sulfur batteries[J]. Energy Storage Mater, 2020, 25: 436-442. |
9 | ZHAO Q, ZHENG J, ARCHER L. Interphases in lithium-sulfur batteries: toward deployable devices with competitive energy density and stability[J]. ACS Energy Lett, 2018, 3(9): 2104-2113. |
10 | HUANG L, LI J, LIU B, et al. Electrode design for lithium-sulfur batteries: problems and solutions[J]. Adv Funct Mater, 2020, 30(22): 1910375. |
11 | WANG X, TAN Y, SHEN G, et al. Recent progress in fluorinated electrolytes for improving the performance of Li-S batteries[J]. J Energy Chem, 2020, 41: 149-170. |
12 | SEH Z, SUN Y, ZHANG Q, et al. Designing high-energy lithium-sulfur batteries[J]. Chem Soc Rev, 2016, 45(20): 5605-5634. |
13 | LI S, FAN Z. Encapsulation methods of sulfur particles for lithium-sulfur batteries: a review[J]. Energy Storage Mater, 2021, 34: 107-127. |
14 | CHEON S, CHOI S, HAN J, et al. Capacity fading mechanisms on cycling a high-capacity secondary sulfur cathode[J]. J Electrochem Soc, 2004, 151(12): A2067-A2073. |
15 | LIU Y, LIU S, LI G, et al. Strategy of enhancing the volumetric energy density for lithium-sulfur batteries[J]. Adv Mater, 2021, 33(8): 2003955. |
16 | HE X, REN J, WANG L, et al. Expansion and shrinkage of the sulfur composite electrode in rechargeable lithium batteries[J]. J Power Sources, 2009, 190(1): 154-156. |
17 | ZHAO Q, HAO Z, TANG J, et al. Cation-selective separators for addressing the lithium-sulfur battery challenges[J]. ChemSusChem, 2021, 14(3): 792-807. |
18 | WANG M, SONG Y, WEI N, et al. Universal interface and defect engineering dual-strategy for graphene-oxide heterostructures toward promoted Li-S chemistry[J]. Chem Eng J, 2021, 418: 129407. |
19 | QI F, SUN Z, FAN X, et al. Tunable interaction between metal-organic frameworks and electroactive components in lithium-sulfur batteries: status and perspectives[J]. Adv Energy Mater, 2021, 11(20): 2100387. |
20 | JANA M, XU R, CHENG X, et al. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries[J]. Energy Environ Sci, 2020, 13(4): 1049-1075. |
21 | YANG X, YU Y, LIN X, et al. Multi-functional nanowall arrays with unrestricted Li+ transport channels and an integrated conductive network for high-areal-capacity Li-S batteries[J]. J Mater Chem A, 2018, 6(45): 22958-22965. |
22 | LIAO K, CHEN S, WEI H, et al. Micropores of pure nanographite spheres for long cycle life and high-rate lithium-sulfur batteries[J]. J Mater Chem A, 2018, 6(45): 23062-23070. |
23 | QIU X, HUA Q, DAI Z, et al. High sulfur loading application with the assistance of an extremely light-weight multifunctional layer on the separator for lithium-sulfur batteries[J]. Ionics, 2019, 26(3): 1139-1147. |
24 | WANG Y, HE J, ZHANG Z, et al. Graphdiyne-modified polyimide separator: a polysulfide-immobilizing net hinders the shuttling of polysulfides in lithium-sulfur battery[J]. ACS Appl Mater Interfaces, 2019, 11(39): 35738-35745. |
25 | SONG Y, ZHOU H, LONG X, et al. Dual-heterostructures decorated interweaved carbon nanofibers sulfur host for high performance lithium-sulfur batteries[J]. Chem Eng J, 2021, 418: 129388. |
26 | HU Y, CHEN W, LEI T, et al. Strategies toward high-loading lithium-sulfur battery[J]. Adv Energy Mater, 2020, 10(17): 2000082. |
27 | LI N, XU Z, WANG P, et al. High-rate lithium-sulfur batteries enabled via vanadium nitride nanoparticle/3D porous graphene through regulating the polysulfides transformation[J]. Chem Eng J, 2020, 398: 125432. |
28 | HE J, MANTHIRAM A. Long-life, high-rate lithium-sulfur cells with a carbon-free VN host as an efficient polysulfide adsorbent and lithium dendrite inhibitor[J]. Adv Energy Mater, 2019, 10(3): 1903241. |
29 | YU Y, YAN M, DONG W, et al. Optimizing inner voids in yolk-shell TiO2 nanostructure for high-performance and ultralong-life lithium-sulfur batteries[J]. Chem Eng J, 2021, 417: 129241. |
30 | QI B, ZHAO X, WANG S, et al. Mesoporous TiN microspheres as an efficient polysulfide barrier for lithium-sulfur batteries[J]. J Mater Chem A, 2018, 6(29): 14359-14366. |
31 | LIU Y, MA S, LIU L, et al. Nitrogen doping improves the immobilization and catalytic effects of Co9S8 in Li-S batteries[J]. Adv Funct Mater, 2020, 30(32): 2002462. |
32 | WANG X, ZHAO X, MA C, et al. Electrospun carbon nanofibers with MnS sulfiphilic sites as efficient polysulfide barriers for high-performance wide-temperature-range Li-S batteries[J]. J Mater Chem A, 2020, 8(3): 1212-1220. |
33 | QIAO B, WANG A, YANG X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nat Chem, 2011, 3(8): 634-641. |
34 | WANG J, DING B, LU X, et al. Single atom-based nanoarchitectured electrodes for high-performance lithium-sulfur batteries[J]. Adv Mater Interfaces, 2021, 8(8): 2002159. |
35 | PENG Y, LU B, CHEN S. Carbon-supported single atom catalysts for electrochemical energy conversion and storage[J]. Adv Mater, 2018, 30(48): 1801995. |
36 | JIAO L, ZHANG R, WAN G, et al. Nanocasting SiO2 into metal-organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts[J]. Nat Commun, 2020, 11(1): 2831. |
37 | SUN S, ZHANG G, GAUQUELIN N, et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition[J]. Sci Rep, 2013, 3(1): 1775. |
38 | CHENG N, SUN X. Single atom catalyst by atomic layer deposition technique[J]. Chinese J Catal, 2017, 38(9): 1508-1514. |
39 | HE X, DENG Y, ZHANG Y, et al. Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts[J]. Cell Rep Phys Sci, 2020, 1(1): 100004. |
40 | FEI H, DONG J, WAN C, et al. Microwave-assisted rapid synthesis of graphene-supported single atomic metals[J]. Adv Mater, 2018, 30(35): 1802146. |
41 | LIU Y, LI Z, YU Q, et al. A general strategy for fabricating isolated single metal atomic site catalysts in Y zeolite[J]. J Am Chem Soc, 2019, 141(23): 9305-9311. |
42 | YANG Q, YANG C, LIN C, et al. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion[J]. Angew Chem Int Ed, 2019, 58(11): 3511-3515. |
43 | ZHANG E, WANG T, YU K, et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction[J]. J Am Chem Soc, 2019, 141(42): 16569-16573. |
44 | DU Z, CHEN X, HU W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. J Am Chem Soc, 2019, 141(9): 3977-3985. |
45 | ZHANG J, ZHAO Y, CHEN C, et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions[J]. J Am Chem Soc, 2019, 141(51): 20118-20126. |
46 | ZHAO L, ZHANG Y, HUANG L, et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts[J]. Nat Commun, 2019, 10(1): 1278. |
47 | HAN J, MENG X, LU L, et al. Single-atom Fe-Nx-C as an efficient electrocatalyst for zinc-air batteries[J]. Adv Funct Mater, 2019, 29(41): 1808872. |
48 | LI M, LU J, AMINE K. Nanotechnology for sulfur cathodes[J]. ACS Nano, 2021, 15(5): 8087-8094. |
49 | WANG C, YI Y, LI H, et al. Rapid gas-assisted exfoliation promises V2O5 nanosheets for high performance lithium-sulfur batteries[J]. Nano Energy, 2020, 67: 104253. |
50 | GAO X, ZHU X, GU L, et al. Efficient polysulfides anchoring for Li-S batteries: ombined physical adsorption and chemical conversion in V2O5 hollow spheres wrapped in nitrogen-doped graphene network[J]. Chem Eng J, 2019, 378: 122189. |
51 | CHENG S, WANG J, DUAN S, et al. Anionic oxygen vacancies in Nb2O5- x/carbon hybrid host endow rapid catalytic behaviors for high-performance high areal loading lithium sulfur pouch cell[J]. Chem Eng J, 2021, 417: 128172. |
52 | ZHONG Y, HAN T, CHENG M, et al. Self-reduction preparation of porous multi-walled ZnCo2O4 spheres as sulfur host for lithium-sulfur battery cathodes with long cycling life and stable rate-performance[J]. J Electroanal Chem, 2021, 880: 114860. |
53 | CHENG Z, CHEN Y, YANG Y. et al. Metallic MoS2 nanoflowers decorated graphene nanosheet catalytically boosts the volumetric capacity and cycle life of lithium-sulfur batteries[J]. Adv Energy Mater, 2021, 11(12): 2003718. |
54 | LI B, SU Q, YU L, et al. Tuning the band structure of MoS2 via Co9S8@MoS2 core-shell structure to boost catalytic activity for lithium-sulfur batteries[J]. ACS Nano, 2020, 14(12): 17285-17294. |
55 | ZHU X, ZHAO W, SONG Y, et al. In situ assembly of 2D conductive vanadium disulfide with graphene as a high-sulfur-loading host for lithium-sulfur batteries[J]. Adv Energy Mater, 2018, 8(20): 1800201. |
56 | XIAO K, WANG J, CHEN Z, et al. Improving polysulfides adsorption and redox kinetics by the Co4N nanoparticle/ N-doped carbon composites for lithium-sulfur batteries[J]. Small, 2019, 15(25): 1901454. |
57 | DENG D, XUE F, JIA Y, et al. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries[J]. ACS Nano 2017, 11(6): 6031-6039. |
58 | CI H, CAI J, MA H, et al. Defective VSe2-graphene heterostructures enabling in situ electrocatalyst evolution for lithium-sulfur batteries[J]. ACS Nano, 2020, 14(9): 11929-11938. |
59 | HE J, MANTHIRAM A. 3D CoSe@C aerogel as a host for dendrite-free lithium-metal anode and efficient sulfur cathode in Li-S full cells[J]. Adv Energy Mater, 2020, 10(41): 2002654. |
60 | LIU Z, ZHOU L, GE Q, et al. Atomic iron catalysis of polysulfide conversion in lithium-sulfur batteries[J]. ACS Appl Mater Interfaces, 2018, 10(23): 19311-19317. |
61 | SHAO Q, XU L, GUO D, et al. Atomic level design of single iron atom embedded mesoporous hollow carbon spheres as multi-effect nanoreactors for advanced lithium-sulfur batteries[J]. J Mater Chem A, 2020, 8(45): 23772-23783. |
62 | WANG J, JIA L, DUAN S, et al. Single atomic cobalt catalyst significantly accelerates lithium ion diffusion in high mass loading Li2S cathode[J]. Energy Storage Mater, 2020, 28: 375-382. |
63 | WANG R, WU R, DING C, et al. Porous carbon architecture assembled by cross-linked carbon leaves with implanted atomic cobalt for high-performance Li-S batteries[J]. Nano-Micro Lett, 2021, 13(1): 151. |
64 | HUANG T, SUN Y, WU J, et al. A dual-functional fibrous skeleton implanted with single-atomic Co-Nx dispersions for longevous Li-S full batteries[J]. ACS Nano, 2021, 15(9): 14105-14115. |
65 | LIU Y, WEI Z, ZHONG B, et al. O-, N-Coordinated single Mn atoms accelerating polysulfides transformation in lithium-sulfur batteries[J]. Energy Stor Mater, 2021, 35: 12-18. |
66 | HAO H, TIAN B, SU C, et al. Single-Atom iron and doped sulfur improve the catalysis of polysulfide conversion for obtaining high-performance lithium-sulfur batteries[J]. ACS Appl Mater Interfaces, 2021, 13(6): 7171-7177. |
67 | ZHAO C, XU G, YU Z, et al. A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites[J]. Nat Nanotechnol, 2021, 16(2): 166-173. |
68 | LI Y, WU J, ZHANG B, et al. Fast conversion and controlled deposition of lithium (poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms[J]. Energy Storge Mater, 2020, 30: 250-259. |
69 | WANG C, SONG H, YU C, et al. Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries[J]. J Mater Chem A, 2020, 8(6): 3421-3430. |
70 | ZHOU G, WANG S, WANG T, et al. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries[J]. Nano Lett, 2020, 20(2): 1252-1261. |
71 | ZHANG K, CHEN Z, NING R, et al. Single-atom coated separator for robust lithium-sulfur batteries[J]. ACS Appl Mater Interfaces, 2019, 11(28): 25147-25154. |
72 | SU Y, MANTHIRAM A. A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer[J]. Chem Commun, 2012, 48(70): 8817-8819. |
73 | LI Y, ZHOU P, LI H, et al. A freestanding flexible single-atom cobalt-based multifunctional interlayer toward reversible and durable lithium-sulfur batteries[J]. Small Methods, 2020, 4(3): 1900701. |
74 | WANG R, WU R, DING C, et al. Atomic tungsten on graphene with unique coordination enabling kinetically boosted lithium-sulfur batteries[J]. Angew Chem Int Ed, 2021, 60(28): 15563-15571. |
75 | ZHANG L, LIU D, WAN F, et al. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries[J]. Adv Mater, 2019, 31(40): 1903955. |
76 | XIE J, LI B, PENG H, et al. Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries[J]. Adv Mater, 2019, 31(43): 1903813. |
77 | LIU H, CHEN X, CHENG X, et al. Uniform lithium nucleation guided by atomically dispersed lithiophilic CoNx sites for safe lithium metal batteries[J]. Small Methods, 2018, 3(9): 1800354. |
78 | XU K, ZHU M, WU X, et al. Dendrite-tamed deposition kinetics using single-atom Zn sites for Li metal anode[J]. Energy Storage Mater, 2019, 23: 587-593. |
79 | LI Y, LIN S, WANG D, et al. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium-sulfur batteries[J]. Adv Mater, 2020, 32(8): 1906722. |
80 | SHI H, LI Y, LU P, et al. Single-atom cobalt coordinated to oxygen sites on graphene for stable lithium metal anodes[J]. Acta Phys-Chim Sin, 2021, 37(11): 20080. |
81 | WANG J, ZHANG J, CHENG S, et al. Long-Life dendrite-free lithium metal electrode achieved by constructing a single metal atom anchored in a diffusion modulator layer[J]. Nano Lett, 2021, 21(7): 3245-3253. |
82 | SHI H, REN X, LU J, et al. Dual-Functional atomic zinc decorated hollow carbon nanoreactors for kinetically accelerated polysulfides conversion and dendrite free lithium sulfur batteries[J]. Adv Energy Mater, 2020, 10(39): 2002271. |
83 | SHI Z, WANG L, XU H. et al. A soluble single atom catalyst promotes lithium polysulfide conversion in lithium sulfur batteries[J]. Chem Commun, 2019, 55(80): 12056-12059. |
84 | ZHANG D, WANG S, HU R, et al. Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries[J]. Adv Funct Mater, 2020, 30(30): 2002471. |
85 | LAI W, WANG H, ZHENG L, et al. General synthesis of single-atom catalysts for hydrogen evolution reactions and room-temperature Na-S batteries[J]. Angew Chem Int Ed, 2020, 59(49): 22171-22178. |
[1] | Chao ZHANG. Research Prospect of Single Atom Catalysts Towards Electrocatalytic Reduction of Carbon Dioxide [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 871-887. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||