[1] 张国栋, 董文平, 刘晓晖, 等. 我国水环境中抗生素赋存、归趋及风险评估研究进展[J]. 环境化学, 2018, 37(7): 1491-1500. ZHANG G D, DONG W P, LIU X H, et al. Occurrence, fate and risk assessment of antibiotics in water environment of China[J]. Environ Chem, 2018, 37(7): 1491-1500. [2] HARTMANN A, ALDER A C, KOLLER T, et al.Identification of fluoroquinolone antibiotics as the main source of umuC genotoxicity in native hospital wastewater[J]. Environ Toxicol Chem, 1998, 17(3): 377-382. [3] 于帅, 李锦, 毛大庆, 等. 抗生素抗性基因在废(污)水处理系统的来源、传播扩散、归趋以及污染控制研究进 展[J]. 环境化学, 2013, 32(11): 2059-2071. YU S, LI J, MAO D Q, et al. Sources, dissemination, fate and pollution control of antibiotic resistance genes in wastewater(sewage) treatment system[J]. Environ Sci, 2013, 32(11): 2059-2071. [4] 金磊, 姜蕾, 韩琪, 等. 华东地区某水源水中13种磺胺类抗生素的分布特征及人体健康风险评价[J]. 环境科学, 2016, 37(7): 2515-2521. JIN L, JIANG L, HAN Q, et al. Distribution characteristics and health risk assessment of thirteen sulfonamides antibiotics in a drinking water source in East China[J]. Environ Sci, 2013, 32(11): 2059-2071. [5] BEN Y J, HU M, ZHANG X Y, et al. Efficient detection and assessment of human exposure to trace antibiotic residues in drinking water[J]. Water Res, 2020, 175: 115699. [6] 武旭跃, 邹华, 朱荣, 等. 太湖贡湖湾水域抗生素污染特征分析与生态风险评价[J]. 环境科学, 2016, 37(12): 4596-4604. WU X Y, ZHOU H, ZHU R,et al. Occurrence, distribution and ecological risk of antibiotics in surface water of the Gonghu bay, Taihu Lake[J]. Environ Sci, 2016, 37(12): 4596-4604. [7] GURUGE K S, GOSWAMI P, TANOUE R, et al. First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways[J]. Sci Total Environ, 2019, 690: 683-695. [8] 杜鹃, 赵洪霞, 陈景文. 固相萃取-高效液相色谱-串联质谱法同时测定养殖海水中23种抗生素[J]. 色谱, 2015, 33(4): 348-353. DU J, ZHAO H X, CHEN J W. Simultaneous determination of 23 antibiotics in mariculture water using solid-phase extraction and high performance liquid chromatography-tandem mass spectrometry[J]. Chinese J Chromatogr, 2015, 33(4): 348-353. [9] 颉亚玮, 於驰晟, 李菲菲, 等. 某市污水厂抗生素和抗生素抗性基因的分布特征[J/OL]. 环境科学:1-11[2021-01-08].https://doi.org/10.13227/j.hjkx.202005304. JIE Y W, YU C S, LI F F, et al. Distribution characteristic of antibiotics and antibiotic resistance genes in wastewater treatment plants[J/OL]. Environ Sci:1-11[2021-01-08].https://doi.org/10.13227/j.hjkx.202005304. [10] 章强, 辛琦, 朱静敏, 等. 中国主要水域抗生素污染现状及其生态环境效应研究进展[J]. 环境化学, 2014, 33(7): 1075-1083. ZHANG Q, XIN Q, ZHU J M,et al. The antibiotic contaminations in the main water bodies in China and the associated environmental and human health impacts[J]. Environ Chem, 2014, 33(7): 1075-1083. [11] 杨成雄, 杨雪清, 严秀平. 金属-有机骨架MIL-101(Cr)掺杂聚合物整体柱的制备及其用于酚类化合物的在线固相萃取[J]. 色谱, 2019, 37(8): 824-830. YANG C X, YANG X Q, YAN X P. Preparation of metal-organic framework MIL-101(Cr) incorporated polymer monolithic column for on-line solid-phase extraction of phenols[J]. Chinese J Chromatogr, 2019, 37(8) :824-830. [12] ROWSELL J L C, YAGHI O M. Metal-organic frameworks: a new class of porous materials[J]. Micropor Mesopor Mater, 2004, 73(1): 3-14. [13] 鲁效庆, 魏淑贤, 王兆杰, 等. 纳米多孔材料中气体吸附与分离的实验设计[J]. 实验技术与管理, 2020, 37(3): 147-152, 164. LU X Q, WEI S X, WANG Z J, et al. Design on experiment of gas capture and separation in nanoporous materials[J]. Exp Technol Manage, 2020, 37(3): 147-152, 164. [14] 朱脉勇, 陈齐, 童文杰, 等. 四氧化三铁纳米材料的制备与应用[J]. 化学进展, 2017, 29(11): 1366-1394. ZHU M Y, CHEN Q, TONG W J, et al. Preparation and application of Fe3O4 nanomaterials[J]. Prog Chem, 2017, 29(11): 1366-1394. [15] 崔巍, 张卫, 刘淋, 等. 功能化金属有机骨架材料对水中痕量磺胺氯哒嗪的吸附行为及其机理[J]. 环境化学, 2020, 39(1): 80-88. CUI W, ZHANG W, LIU L, et al. Adsorption behavior and mechanism of functional mental organic frameworks for sulfachloropyridazine in water. [J]. Environ Chem, 2020, 39(1): 80-88. [16] HU H P, LIU S Q, CHEN C Y, et al. Two novel zeolitic imidazolate frameworks (ZIFs) as sorbents for solid-phase extraction (SPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples[J]. Analyst, 2014, 22(139): 5818-5826. [17] 蒋绍阶, 王洪武. 磁性金属有机骨架Fe3O4@ZIF-8的制备及对偶氮染料刚果红的高效吸附[J]. 环境工程学报, 2019, 13(10): 2347-2356. JIANG S J, WANG H W. Preparation of magnetic metal organic framework Fe3O4@ZIF-8 and its high efficient adsorption towards azo dye Congo Red[J]. Chinese J Environ Eng, 2019, 13(10): 2347-2356. [18] 李小蒙, 王旭坤, 吴怡秋, 等. 金属有机骨架纳米材料-固相萃取环境水样中亚硝胺类消毒副产物[J]. 环境化学, 2019, 38(6): 1258-1265. LI X M, WANG X K, WU Y Q, et al. Determination of N-nitrosamines in water samples based on the solid-phase extraction with metal-organic framework[J]. Environ Chem, 2019, 38(6): 1258-1265. [19] DHAKA S , KUMAR R , DEEP A , et al. Metal-organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments[J]. Coord Chem Rev, 2019, 380: 330-352. [20] LIU K , ZHANG S, HU X , et al. Understanding the adsorption of PFOA on MIL-101(Cr)-based anionic-exchange metal-organic frameworks: comparing DFT calculations with aqueous sorption experiments[J]. Environ Sci Technol, 2015, 49(14): 8657-65. [21] SHI W N, ZHU Y Q, SHEN C , et al. Water sorption properties of functionalized MIL-101(Cr)-X (X=—NH2, —O3H, —H, —CH3, —F) based composites as thermochemical heat storage materials[J]. Micropor Mesopor Mater, 2019, 285: 129-136. [22] 唐可仁, 张孜彤, 雷婷, 等. 石墨烯HF-SPME-HPLC测定牛奶中氟喹诺酮类抗生素残留[J]. 食品工业科技, 2019, 40(18): 243-249. TANG K R, ZHANG Z T, LEI T, et al. Determination of fluoroquinolone antibiotic in milk with graphene HF-SPME-HPLC[J]. Sci Technol Food Ind, 2019, 40(18): 243-249. [23] 高磊, 王鹏, 陈中祥,等. 磁性固相萃取-超高效液相色谱串联三重四级杆质谱法测定渔业水环境中的12种磺胺类抗生素残留[J]. 中国渔业质量与标准, 2020, 10(1): 6-42. GAO L, WANG P, CHEN Z X, et al. Determination of 12 kinds of sulfonamide antibiotic residues in fishery water using magnetic solid phase extraction-ultra high performance liquid chromatography coupled with triple quadrupole massspectrometry[J]. Chinese Fish Qual Stand, 2020, 10(1): 36-42. [24] 王娅南, 彭洁, 谢双, 等. 固相萃取-高效液相色谱-串联质谱法测定地表水中40种抗生素[J]. 环境化学, 2020, 39(1): 188-196. WANG Y N, PENG J, XIE S,et al. Determination of 40 antibiotics in surface water by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry[J]. Environ Chem, 2020, 39(1): 188-196. [25] 沈杨银, 饶桂维, 蔡婕妤, 等. 悬浮固化液相微萃取高效液相色谱法测定环境水样中磺胺类药物[J]. 化学分析计量, 2020, 29(5): 49-53, 79. SHEN Y Y, RAO G W, CAI J Y, et al. Determination of sulfonamides in environmental water samples by liquid phase microextraction based on solidification of floating organic droplet coupled with high performance liquid chromatography[J]. Chem Anal Meter, 2020, 29(5): 49-53, 79. [26] 张鸣珊, 李腾崖, 曹小聪, 等. 液液萃取-超高效液相色谱-三重四级杆质谱测定地表水中19种磺胺类药物残留[J]. 环境污染与防治, 2020, 42(7): 838-842. ZHANG M S, LI T Y, CAO X C, et al. Determination of 19 sulfonamides residues in surface water by liquid-liquid extraction with UPLC-MS/MS[J]. Environ Pollut Control, 2020, 42(7): 838-842. [27] 付杰, 周佳佳, 李军, 等. 在线固相萃取-高效液相色谱-串联质谱法测定饮用水中10种磺胺类化合物[J]. 环境研究与监测, 2019, 32(1): 1-5. FU J, ZHOU J J, LI J, et al. Determination of 10 sulfonamides in drinking water by on-line solid phase extraction-high performance liquid chromatography-tandem mass spectrometry[J]. Environ Res Monit, 2019, 32(1): 1-5. [28] 周婵媛, 罗军, 王壹, 等. 在线微固相萃取/高效液相色谱联用分析环境水样中磺胺类药物[J]. 分析测试学报, 2018, 37(12): 1451-1456. ZHOU C Y, LUO J, WANG Y, et al. Analysis of sulfonamides in environmental water samples by high performance liquid chromatography with online micro-solid-phase extraction[J]. J Instrum Anal, 2018, 37(12): 1451-1456. |