Chinese Journal of Applied Chemistry ›› 2021, Vol. 38 ›› Issue (10): 1353-1361.DOI: 10.19894/j.issn.1000-0518.210362
• Full Papers • Previous Articles Next Articles
Yuan DENG‡, Yao-Jian FAN‡, Lei TAO, Zhi-Wang LUO, He-Lou XIE()
Received:
2021-07-26
Accepted:
2021-09-01
Published:
2021-10-01
Online:
2021-10-15
Contact:
He-Lou XIE
About author:
He-lou@xtu.edu.cnSupported by:
CLC Number:
Yuan DENG, Yao-Jian FAN, Lei TAO, Zhi-Wang LUO, He-Lou XIE. Liquid Crystal Nanoparticles Containing Azobenzene:Synthesis, Supramolecular Structure and Their Applications in Light⁃Controlled Orientation[J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1353-1361.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210362
样品 Samples | 30 mmol/L氯金酸溶液的体积 V(HAuCl4)/mL | 50 mmol/L四辛基溴化铵溶液的体积 V(TOAB)/mL | 偶氮小分子配体用量 m(AzoC6?SH)/mg | 0.4 mol/L硼氢化钠的体积 V(NaBH4)/mL |
---|---|---|---|---|
Au@AzoC6?1 | 9 | 24 | 99 | 7.5 |
Au@AzoC6?2 | 9 | 24 | 150 | 7.5 |
Au@AzoC6?3 | 9 | 24 | 170 | 7.5 |
Au@AzoC6?4 | 6 | 16 | 133 | 5.0 |
Au@AzoC6?5 | 6 | 16 | 167 | 5.0 |
Au@AzoC6?6 | 6 | 16 | 200 | 5.0 |
Table 1 Au@AzoC6?n prepared by different ratios of HAuCl4·3H2O and ligand AzoC6?SH
样品 Samples | 30 mmol/L氯金酸溶液的体积 V(HAuCl4)/mL | 50 mmol/L四辛基溴化铵溶液的体积 V(TOAB)/mL | 偶氮小分子配体用量 m(AzoC6?SH)/mg | 0.4 mol/L硼氢化钠的体积 V(NaBH4)/mL |
---|---|---|---|---|
Au@AzoC6?1 | 9 | 24 | 99 | 7.5 |
Au@AzoC6?2 | 9 | 24 | 150 | 7.5 |
Au@AzoC6?3 | 9 | 24 | 170 | 7.5 |
Au@AzoC6?4 | 6 | 16 | 133 | 5.0 |
Au@AzoC6?5 | 6 | 16 | 167 | 5.0 |
Au@AzoC6?6 | 6 | 16 | 200 | 5.0 |
样品Sample | Au@AzoC6?1 | Au@AzoC6?2 | Au@AzoC6?3 | Au@AzoC6?4 | Au@AzoC6?5 | Au@AzoC6?6 |
---|---|---|---|---|---|---|
粒径 Diameter/nm | 1.4(±0.1) | 2.2(±0.3) | 2.7(±0.1) | 3.2(±0.2) | 4.1(±0.2) | 6.4(±0.3) |
金质量分数/% Mass fraction of Au/% | 32.0 | 37.9 | 38.6 | 44.9 | 43.4 | 40.6 |
每个纳米粒子中金原子数目 Number of gold atoms per particle | 84 | 327 | 605 | 1 008 | 2 121 | 8 069 |
每个纳米粒子中配体数目 Number of ligands per particle | 96 | 287 | 515 | 662 | 1 482 | 6 312 |
每nm2的配体数目 Number of ligands per nm2 | 49 | 59 | 70 | 64 | 88 | 154 |
Table 2 Calculation results of Au@AzoC6?n(n=1~6)
样品Sample | Au@AzoC6?1 | Au@AzoC6?2 | Au@AzoC6?3 | Au@AzoC6?4 | Au@AzoC6?5 | Au@AzoC6?6 |
---|---|---|---|---|---|---|
粒径 Diameter/nm | 1.4(±0.1) | 2.2(±0.3) | 2.7(±0.1) | 3.2(±0.2) | 4.1(±0.2) | 6.4(±0.3) |
金质量分数/% Mass fraction of Au/% | 32.0 | 37.9 | 38.6 | 44.9 | 43.4 | 40.6 |
每个纳米粒子中金原子数目 Number of gold atoms per particle | 84 | 327 | 605 | 1 008 | 2 121 | 8 069 |
每个纳米粒子中配体数目 Number of ligands per particle | 96 | 287 | 515 | 662 | 1 482 | 6 312 |
每nm2的配体数目 Number of ligands per nm2 | 49 | 59 | 70 | 64 | 88 | 154 |
Fig.6 UV-Vis spectra of Au@AzoC6-1 in solution after irradiated with 365 nm(A) and 470 nm(B) light for different times; (C) The relationship between the nanoparticles diameters and response time
Fig.7 POM diagrams of liquid crystal cells with different Au@AzoC6 concentrations in the initial state (A, B, C), after ultraviolet irradiation (D, E, F), and after visible light irradiation(G, H, I)
1 | LEZEC H J, DEGIRON A, DEVAUX E, et al. Beaming light from a subwavelength aperture[J]. Science, 2002, 297(5582): 820-822. |
2 | OZBAY E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189-193. |
3 | KANKALA R K, HAN Y H, NA J, et al. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles[J]. Adv Mater, 2020, 32(23): 1907035. |
4 | SÁNCHEZ-LÓPEZ E, GOMES D, ESTERUELAS G, et al. Metal-based nanoparticles as antimicrobial agents: an overview[J]. Nanomaterials, 2020, 10(2): 292. |
5 | SOMERS R C, BAWENDI M G, NOCERA D G. CdSe nanocrystal based chem-/bio-sensors[J]. Chem Soc Rev, 2007, 36 (4): 579-591. |
6 | XUE C, LI Q. Anisotropic nanomaterials: preparation, properties, and applications[M]//Anisotropic Nanomaterials. Springer, Cham, 2015: 69-118. |
7 | MITCHELL M J, BILLINGSLEY M M, HAEY R M, et al. Engineering precision nanoparticles for drug delivery[J]. Nat Rev Drug Discov, 2021, 20(2): 101-124. |
8 | ASTRUC D. Introduction: nanoparticles in catalysis[J]. Chem Rev, 2020, 120(2): 461-463. |
9 | GURUNATHAN S, QASIM M, CHOI Y, et al. Antiviral potential of nanoparticles—can nanoparticles fight against coronaviruses?[J]. Nanomaterials, 2020, 10(9): 1645. |
10 | DANIEL M C, ASTRUC D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chem Rev, 2004, 104 (1): 293-346. |
11 | GAO J, GU H, XU B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications[J]. Acc Chem Res, 2009, 42(8): 1097-1107. |
12 | MACFARLANE L R, SHAIKH H, GARCIA-HERNANDEZ J D, et al. Functional nanoparticles through π-conjugated polymer self-assembly[J]. Nat Rev Mater, 2021, 6(1): 7-26. |
13 | LIU J, LUO T, XUE Y, et al. Hierarchical self-assembly of discrete metal-organic cages into supramolecular nanoparticles for intracellular protein delivery[J]. Angew Chem Int Ed, 2021, 60(10): 5429-5435. |
14 | DU Y, JIA S, CHEN Y, et al. Type I photoinitiator-functionalized block copolymer nanoparticles prepared by RAFT-mediated polymerization-induced self-assembly[J]. ACS Macro Lett, 2021, 10(2): 297-306. |
15 | WANG L, URBAS A M, LI Q. Nature-inspired emerging chiral liquid crystal nanostructures: from molecular self-assembly to DNA mesophase and nanocolloids[J]. Adv Mater, 2020, 32(41): 1801335. |
16 | DHAKAL N P, JIANG J, GUO Y, et al. Self-assembly of aqueous soft matter patterned by liquid-crystal polymer networks for controlling the dynamics of bacteria[J]. ACS Appl Mater Interfaces, 2020, 12(12): 13680-13685. |
17 | PARK W, HA T, JUNG T S, et al. Security use of the chiral photonic film made of helical liquid crystal structures[J]. Nanoscale, 2020, 12(42): 21629-21634. |
18 | SEGURA-FERNÁNDEZ F G, SERRATO-GARCÍA E F, FLORES-CALDERÓN J E, et al. Dynamics of nanoparticle self-assembly by liquid crystal sorting in two dimensions[J]. Front Phys, 2021, 9: 228. |
19 | CHENG X H, GAO H F, TAN X P, et al. Transition between triangular and square tiling patterns in liquid crystalline honeycombs based on tetrathiophene-based bolaamphiphiles[J]. Chem Sci, 2013, 4: 3317-3331 |
20 | NEALON G L, GREGET R, DOMINGUEZ C, et al. Liquid-crystalline nanoparticles: hybrid design and mesophase structures[J]. Beilstein J Org Chem, 2012, 8(1): 349-370. |
21 | ZHANA X, HSU C H, REN X, et al. Supramolecular fullerene liquid crystals formed by self-organized two-dimensional crystals[J]. Angew Chem Int Ed, 2015, 54 (1): 114-117. |
22 | TRAN L, BISHOP K J M. Swelling cholesteric liquid crystal shells to direct the assembly of particles at the interface[J]. ACS Nano, 2020, 14(5): 5459-5467. |
23 | PRAKASH J, KHAN S, CHAUHAN S, et al. Metal oxide-nanoparticles and liquid crystal composites: a review of recent progress[J]. J Mol Liq, 2020, 297: 112052. |
24 | PANDEY F P, RASTOGI A, MANOHAR R, et al. Dielectric and electro-optical properties of zinc ferrite nanoparticles dispersed nematic liquid crystal 4'-heptyl-4-biphenylcarbonnitrile[J]. Liq Cryst, 2020, 47(7): 1025-1040. |
25 | SINGH B P, SIKARWAR S, MISRA A K, et al. Enhanced electro-optical properties of low viscous nematic liquid crystal doped with mixed phase anatase/rutile TiO2 nanoparticles for display applications[J]. World J Appl Chem, 2021, 6(3): 25. |
26 | GOODBY J W, SAEZ I M, COWLING S J, et al. Transmission and amplification of information and properties in nanostructured liquid crystals[J]. Angew Chem Int Ed, 2008, 47(15): 2754-2787 |
27 | STUDENYAK I P, KOVALCHUK O V, POGODIN A I, et al. Influence of cation substitution on dielectric properties and electric conductivity of 6CB liquid crystal with Me7GeS5I (Me=Ag, Cu) superionic nanoparticles[J]. Mol Cryst Liq Cryst, 2020, 702(1): 21-29. |
28 | TOMAŠOVIČOVÁ N, BATKOVA M, BATKO I, et al. Orientational self-assembly of nanoparticles in nematic droplets[J]. Nanoscale Adv, 2021, 3(10): 2777-2781. |
29 | KUMAR S. Discotic liquid crystal-nanoparticle hybrid systems[J]. NPG Asia Mater, 2014, 6: e82 |
30 | CSEH L, MANG X, ZENG X, et al. Helically twisted chiral arrays of gold nanoparticles coated with a cholesterol mesogen[J]. J Am Chem Soc, 2015, 137(40): 12736-12739. |
31 | MAI Y, EISENBERG A. Controlled incorporation of particles into the central portion of vesicle walls[J]. J Am Chem Soc, 2010, 132(29): 10078-10084. |
[1] | Lin-Tao YANG, Mao LI. Molecular-Mass and Its Distribution Analysis of n-Alkylated Poly(p-phenylene terephthamide) [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 853-859. |
[2] | Jia-Cheng ZHOU, Dong-Dong WANG, Yun-Bao GAO, Jing JIN, Wei JIANG. Rheological Properties and Bonding Properties of Modified Poly(Propylene Carbonate) Pressure-sensitive Adhesive [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 871-878. |
[3] | Peng-Hui FAN, Jie LIU, Sheng-Hui LOU, Tao TANG. Research Progress on Synergists of Phosphorous Flame Retardants in Epoxy Resin [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 653-665. |
[4] | Lin YANG, Hui PAN, Ding-Feng GAO, Xiao-Dong WANG. Preparation and Characterization of Nanocomposite Leather Finishing Agent Based on Aramid Modified Polymer [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 708-719. |
[5] | Yu-Chen TAO, Xiao-Hui HOU, Deng-Ke YIN, Ye YANG. Effect of Electric Field-Regulating Cholesterol-based Liquid Crystal Films on the Growth and Differentiation of Fibroblasts [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 546-553. |
[6] | Nan-Yu LIN, Feng GAO, Jiang-Ying QU, Jing-Jing TU, Wei-Jun ZHONG, Yun-Hao ZANG. Preparation of Super-hydrophilic/Underwater Oil-phobic High Silicon Cloth and Its Oil-water Separation Performance [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 449-459. |
[7] | Bi-Ru SHI, Hao-Hao WU, Hao-Pu XIE, Xin-Xin TIAN, Ying-Lu SUN, Xiang-Dong LIU, Yu-Ming YANG. Preparation and Properties of Self-healing Polyurethane Adhesives with Diels-Alder Bonds [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 277-287. |
[8] | Yong-Peng LYU, Yu-Ge WANG, Qian-Qian GU, Zhi-Cai ZHANG, Jian-Shu XIAO, Yuan YIN, Hong-Guo SUN, Ya-Fang ZHENG, Zhao-Yan SUN. Dispersion of Carbon Black in Isoprene Rubber and Its Static and Dynamic Properties [J]. Chinese Journal of Applied Chemistry, 2022, 39(12): 1842-1853. |
[9] | Yi-Lian MA, Hao-Dong HU, Ying-Li DING, Xiang-Jian CHEN, Liang CUI, Kun-Yu ZHANG. Modification of Polylactic Acid by Reactive Blending with Functionalized Imidazolium-based Ionomers and Epoxy-containing Additives [J]. Chinese Journal of Applied Chemistry, 2022, 39(12): 1870-1879. |
[10] | Bing-Bing LENG, Chun-Hui ZHU, Cheng-Ying SHI, Zhi-Peng WANG, Yang LIU, Hong-Yan ZHANG, Wen-Ge XU, Bai-Jun LIU. Preparation and Flame Retardancy of the Irradiation‑crosslinked PE‑based Composites Containing a Cyclophosphazene Derivative [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1672-1679. |
[11] | Xu-Kai WANG, Jia-Zhen YANG, Jian-Xun DING. Double Network‑Enhanced Chiral Supramolecular Hydrogel to Promote Osteogenesis [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1627-1628. |
[12] | Xiao-Jian DING, Cong-Jun CAO, Cheng-Min HOU, Han-Xiao MA, Jiao HU, Meng-Jie REN, Guo-Yong YANG. Preparation and Performance of Environmentally Friendly Fluorine⁃Free Superhydrophobic Fabric for Oil/Water Separation [J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1391-1400. |
[13] | Dan ZHANG, Fang LIU, Xue YANG, Dong-Hua XU, Tong-Fei SHI. Relationship Between Hardness and Impact Properties of Thermoplastic Polyurethane Blends [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1216-1223. |
[14] | Xiao-Feng GUO, Jia-Lin LI, Yu-Bo WANG, Jun-Su JIN. Research Progress on Synthesis and Properties of Sulfur⁃Containing High Refractive Index Optical Resins [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 723-735. |
[15] | Jing TANG, Na ZHANG, Dong-Xu SHI, Fang-Hui ZHANG, Jian-Jie TANG. Synthesis of UiO-66-NH2Grafted Pyridineimine Cobalt Catalyst and Its Catalytic Performance in Ethylene Oligomerization [J]. Chinese Journal of Applied Chemistry, 2022, 39(02): 258-265. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||