[1] | Zhao M Q,Torelli M,Ren C E,et al. 2D Titanium Carbide and Transition Metal Oxides Hybrid Electrodes for Li-Ion Storage[J]. Nano Energy,2016,30:603-613. | [2] | Ma T Y,Cao J L,Jaroniec M,et al. Interacting Carbon Nitride and Titanium Carbide Nanosheets for High-Performance Oxygen Evolution[J]. Angew Chem Int Ed,2016,55(3):1138-1142. | [3] | Guo X,Xie X,Choi S,et al. Sb2O3/MXene(Ti3C2Tx) Hybrid Anode Materials with Enhanced Performance for Sodium-Ion Batteries[J]. J Mater Chem A,2017,5(24):12445-12452. | [4] | Liao X,Zhao Y,Wang J,et al. MoS2/MnO2 Heterostructured Nanodevices for Electrochemical Energy Storage[J]. Nano Res,2018,11(4):2083-2092. | [5] | Yang Q,Feng C,Liu J,et al. Synthesis of Porous Co3O4/C Nanoparticles as Anode for Li-Ion Battery Application[J]. Appl Surf Sci,2018,443:401-406. | [6] | Zeng Y,Luo J,Wang Y,et al. Controllable Formation of Multi-layered SnO2@Fe2O3 Sandwich Cubes as a High-Performance Anode for Li-Ion Batteries[J]. Nanoscale,2017,9(44):17576-17584. | [7] | He H,Gan Q,Wang H,et al. Structure-dependent Performance of TiO2/C as Anode Material for Na-Ion Batteries[J]. Nano Energy,2018,44:217-227. | [8] | Zu L,Su Q,Zhu F,et al. Antipulverization Electrode Based on Low-Carbon Triple-Shelled Superstructures for Lithium-Ion Batteries[J]. Adv Mater,2017,29(34):1701494. | [9] | Wang J,Tang H,Zhang L,et al. Multi-shelled Metal Oxides Prepared via an Anion-Adsorption Mechanism for Lithium-Ion Batteries[J]. Nat Energy,2016,1(5):16050. | [10] | Tang Y,Zhu J F,Yang C H,et al. Enhanced Supercapacitive Performance of Manganese Oxides Doped Two-dimensional Titanium Carbide Nanocomposite in Alkaline Electrolyte[J]. J Alloys Compd,2016,685:194-201. | [11] | Wang F,Wang Z,Zhu J,et al. Facile Synthesis SnO2 Nanoparticle-modified Ti3C2 MXene Nanocomposites for Enhanced Lithium Storage Application[J]. J Mater Sci,2017,52(7):3556-3565. | [12] | Zhang R,Wang Y,Zhou H,et al. Mesoporous TiO2 Nanosheets Anchored on Graphene for Ultra-long Life Na-Ion Batteries[J]. Nanotechnology,2018,29(22):225401. | [13] | Qu J,Cloud J E,Yang Y,et al. Synthesis of Nanoparticles-deposited Double-walled TiO2-B Nanotubes with Enhanced Performance for Lithium-Ion Batteries[J]. ACS Appl Mater Interfaces,2014,6(24):22199-22208. | [14] | Zhang T,Pan L,Tang H,et al. Synthesis of Two-dimensional Ti3C2Tx MXene Using HCl+LiF Etchant:Enhanced Exfoliation and Delamination[J]. J Alloys Compd,2017,695:818-826. | [15] | Ni J,Fu S,Wu C,et al. Self-supported Nanotube Arrays of Sulfur-doped TiO2 Enabling Ultrastable and Robust Sodium Storage[J]. Adv Mater,2016,28(11):2259-2265. | [16] | Swamy V,Kuznetsov A,Dubrovinsky L S,et al. Finite-size and Pressure Effects on the Raman Spectrum of Nanocrystalline Anatase TiO2[J]. Phys Rev B,2005,71(18):184302. | [17] | Yang C,Wang Z,Lin T,et al. Core-shell Nanostructured “Black” Rutile Titania as Excellent Catalyst for Hydrogen Production Enhanced by Sulfur Doping[J]. J Am Chem Soc,2013,135(47):17831-17838. | [18] | Ding S,Chen J S,Luan D,et al. Graphene-supported Anatase TiO2 Nanosheets for Fast Lithium Storage[J]. Chem Commun,2011,47(20):5780-5782. | [19] | Subramanian V,Karki A,Gnanasekar K I,et al. Nanocrystalline TiO2(anatase) for Li-Ion Batteries[J]. J Power Sources,2006,159(1):186-192. | [20] | Brutti S,Gentili V,Menard H,et al. TiO2-(B) Nanotubes as Anodes for Lithium Batteries:Origin and Mitigation of Irreversible Capacity[J]. Adv Energy Mater,2012,2(3):322-327. |
|