[1] | Liu K,Xu Z,Yin M. Perylenediimide-Cored Dendrimers and Their Bioimaging and Gene Delivery Applications[J]. Prog Polym Sci,2015,46:25-54. | [2] | Chen M,Yin M. Design and Development of Fluorescent Nanostructures for Bioimaging[J]. Prog Polym Sci,2014,39(2):365-395. | [3] | Sun M,Müllen K,Yin M. Water-Soluble Perylenediimides:Design Concepts and Biological Applications[J]. Chem Soc Rev,2016,45(6):1513-1528. | [4] | Ji C,Zheng Y,Li J,et al.An Amphiphilic Squarylium Indocyanine Dye for Long-Term Tracking of Lysosomes[J]. J Mater Chem B,2015,3(38):7494-7498. | [5] | Li J,Guo K,Shen J,et al.A Difunctional Squarylium Indocyanine Dye Distinguishes Dead Cells Through Diverse Staining of the Cell Nuclei/Membranes[J]. Small,2014,10(7):1351-1360. | [6] | Xu Z,Guo K,Yu J,et al.A Unique Perylene-Based DNA Intercalator:Localization in Cell Nuclei and Inhibition of Cancer Cells and Tumors[J]. Small,2014,10(20):4087-4092. | [7] | He B,Chu Y,Yin M,et al.Fluorescent Nanoparticle Delivered DsRNA Toward Genetic Control of Insect Pests[J]. Adv Mater,2013,25(33):4580-4584. | [8] | Zheng Y,You S,Ji C,et al.Development of an Amino Acid-Functionalized Fluorescent Nanocarrier to Deliver a Toxin to Kill Insect Pests[J]. Adv Mater,2016,28(7):1375-1380. | [9] | Li J,Hu Q,Yu X,et al.A Novel Rhodamine-Benzimidazole Conjugate as a Highly Selective Turn-On Fluorescent Probe for Fe3+[J]. J Fluoresc,2011,21(5):2005-2013. | [10] | Xu H,Zhou S,Xiao L,et al.Fabrication of a Nitrogen-Doped Graphene Quantum Dot from MOF-Derived Porous Carbon and Its Application for Highly Selective Fluorescence Detection of Fe3+[J]. J Mater Chem C,2015,3(2):291-297. | [11] | Zhang S,Li J,Zeng M,et al.Polymer Nanodots of Graphitic Carbon Nitride as Effective Fluorescent Probes for the Detection of Fe3+ and Cu2+ Ions[J]. Nanoscale,2014,6(8):4157-4162. | [12] | Liu K,Xu Z,Yin M,et al.A Multifunctional Perylenediimide Derivative(DTPDI) Can be Used as a Recyclable Specific Hg2+ Ion Sensor and an Efficient DNA Delivery Carrier[J]. J Mater Chem B,2014,2(15):2093-2096. | [13] | Liu K,Hu Y,Xu Z,et al.Fluorescent Sensor for Rapid Detection of Nucleophile and Convenient Comparison of Nucleophilicity[J]. Anal Chem,2017,89(9):5131-5137. | [14] | Li J,Yim D,Jang W D,et al.Recent Progress in the Design and Applications of Fluorescence Probes Containing Crown Ethers[J]. Chem Soc Rev,2017,46(9):2437-2458. | [15] | Zheng B,Wang F,Dong S,et al.Supramolecular Polymers Constructed by Crown Ether-Based Molecular Recognition[J]. Chem Soc Rev,2012,41(5):1621-1636. | [16] | Engeldinger E,Armspach D,Matt D. Capped Cyclodextrins[J]. Chem Rev,2003,103(11):4147-4174. | [17] | Morohashi N,Narumi F,Iki N,et al.Thiacalixarenes[J]. Chem Rev,2006,106(12):5291-5316. | [18] | Isaacs L. Stimuli Responsive Systems Constructed Using Cucurbit[n]uril-Type Molecular Containers[J]. Acc Chem Res,2014,47(7):2052-2062. | [19] | Yu G,Jie K,Huang F. Supramolecular Amphiphiles Based on Host-Guest Molecular Recognition Motifs[J]. Chem Rev,2015,115(15):7240-7303. | [20] | Gokel G W,Leevy W M,Weber M E. Crown Ethers:Sensors for Ions and Molecular Scaffolds for Materials and Biological Models[J]. Chem Rev,2004,104(5):2723-2750. | [21] | Cacciapaglia R,Mandolins L. Catalysis by Metal Ions in Reactions of Crown Ether Substrates[J]. Chem Soc Rev,1993,22(4):221-231. | [22] | Rekharsky M V,Inoue Y. Complexation Thermodynamics of Cyclodextrins[J]. Chem Rev,1998,98(5):1875-1918. | [23] | Terao J. π-Conjugated Molecules Covered by Permethylated Cyclodextrins[J]. Chem Rec,2011,11(5):269-283. | [24] | Gutsche C D. Calixarenes[J]. Acc Chem Res,1983,16(5):161-170. | [25] | Gutsche C D,Lin L G. Calixarenes 12:The Synthesis of Functionalized Calixarenes[J]. Tetrahedron,1986,42(6):1633-1640. | [26] | Kumar R,Lee Y O,Bhalla V,et al.Recent Developments of Thiacalixarene Based Molecular Motifs[J]. Chem Soc Rev,2014,43(13):4824-4870. | [27] | Freeman W A,Mock W L,Shih N Y. Cucurbituril[J]. J Am Chem Soc,1981,103(24):7367-7368. | [28] | Lee J W,Samal S,Selvapalam N,et al.Cucurbituril Homologues and Derivatives:New Opportunities in Supramolecular Chemistry[J]. Acc Chem Res,2003,36(8):621-630. | [29] | Strutt N L,Forgan R S,Spruell J M,et al.Monofunctionalized Pillar[5]arene as a Host for Alkanediamines[J]. J Am Chem Soc,2011,133(15):5668-5671. | [30] | Yao Y,Xue M,Chen J,et al.An Amphiphilic Pillar[5]arene:Synthesis, Controllable Self-Assembly in Water, and Application in Calcein Release and TNT Adsorption[J]. J Am Chem Soc,2012,134(38):15712-15715. | [31] | Yu G,Ma Y,Han C,et al.A Sugar-Functionalized Amphiphilic Pillar[5]arene:Synthesis, Self-Assembly in Water, and Application in Bacterial Cell Agglutination[J]. J Am Chem Soc,2013,135(28):10310-10313. | [32] | Mohandoss S,Stalin T. A New Fluorescent PET Sensor Probe for Co2+ Ion Detection:Computational, Logic Device and Living Cell Imaging Applications[J]. RSC Adv,2017,7(27):16581-16593. | [33] | Mondal S,Purkayastha P. α-Cyclodextrin Functionalized Carbon Dots:Pronounced Photoinduced Electron Transfer by Aggregated Nanostructures[J]. J Phys Chem C,2016,120(26):14365-14371. | [34] | Xia D,Wang P,Shi B. Cu(Ⅱ) Ion-Responsive Self-Assembly Based on a Water-Soluble Pillar[5]arene and a Rhodamine B-Containing Amphiphile in Aqueous Media[J]. Org Lett,2017,19(1):202-205. | [35] | Yao Y,Chi X,Zhou Y,et al.A Bola-type Supra-Amphiphile Constructed from a Water-Soluble Pillar[5]Arene and a Rod-Coil Molecule for Dual Fluorescent Sensing[J]. Chem Sci,2014,5(7):2778-2782. | [36] | Müller B J,Borisov S M,Klimant I. Red- to NIR-Emitting, BODIPY-Based, K+-Selective Fluoroionophores and Sensing Materials[J]. Adv Funct Mater,2016,26(42):7697-7707. | [37] | Bhasikuttan A C,Pal H,Mohanty J. Cucurbit[n]uril Based Supramolecular Assemblies:Tunable Physico-Chemical Properties and Their Prospects[J]. Chem Commun,2011,47(36):9959-9971. | [38] | Ghale G,Nau W M. Dynamically Analyte-Responsive Macrocyclic Host-Fluorophore Systems[J]. Acc Chem Res,2014,47(7):2150-2159. | [39] | Wiskur S L,Ait-Haddou H,Lavigne J J,et al.Teaching Old Indicators New Tricks[J]. Acc Chem Res,2001,34(12):963-972. | [40] | Bakirci H,Nau W M. Fluorescence Regeneration as a Signaling Principle for Choline and Carnitine Binding:A Refined Supramolecular Sensor System Based on a Fluorescent Azoalkane[J]. Adv Funct Mater,2006,16(2):237-242. | [41] | Guo D S,Uzunova V D,Su X,et al.Operational Calixarene-Based Fluorescent Sensing Systems for Choline and Acetylcholine and Their Application to Enzymatic Reactions[J]. Chem Sci,2011,2(9):1722-1734. | [42] | Inouye M,Hashimoto K,Isagawa K. Nondestructive Detection of Acetylcholine in Protic Media:Artificial-Signaling Acetylcholine Receptors[J]. J Am Chem Soc,1994,116(12):5517-5518. | [43] | Korbakov N,Timmerman P,Lidich N,et al.Acetylcholine Detection at Micromolar Concentrations with the Use of an Artificial Receptor-Based Fluorescence Switch[J]. Langmuir,2008,24(6):2580-2587. | [44] | Hennig A,Bakirci H,Nau W M. Label-Free Continuous Enzyme Assays with Macrocycle-Fluorescent Dye Complexes[J]. Nat Meth,2007,4(8):629-632. | [45] | Daly B,Ling J,de Silva A P. Current Developments in Fluorescent PET(Photoinduced Electron Transfer) Sensors and Switches[J]. Chem Soc Rev,2015,44(13):4203-4211. | [46] | De Silva A P,Moody T S,Wright G D. Fluorescent PET(Photoinduced Electron Transfer) Sensors as Potent Analytical Tools[J]. Analyst,2009,134(12):2385-2393. | [47] | Grätzel,M.Dye-Sensitized Solar Cells[J]. J Photochem Photobiol C:Photochem Rev,2003,4(2):145-153. | [48] | Jung H S,Verwilst P,Kim W Y,et al.Fluorescent and Colorimetric Sensors for the Detection of Humidity or Water Content[J]. Chem Soc Rev,2016,45(5):1242-1256. | [49] | Ast S,Müller H,Flehr R,et al.High Na+ and K+ Induced Fluorescence Enhancement of a π-Conjugated Phenylaza-18-Crown-6-Triazol-Substituted Coumarin Fluoroionophore[J]. Chem Commun,2011,47(16):4685-4687. | [50] | Inokuchi Y,Boyarkin O V,Kusaka R,et al.UV and IR Spectroscopic Studies of Cold Alkali Metal Ion-Crown Ether Complexes in the Gas Phase[J]. J Am Chem Soc,2011,133(31):12256-12263. | [51] | Jung H S,Kim H J,Vicens J,et al.A New Fluorescent Chemosensor for F- Based on Inhibition of Excited-State Intramolecular Proton Transfer[J]. Tetrahedron Lett,2009,50(9):983-987. | [52] | Mittapalli R R,Namashivaya S S R,Oshchepkov A S,et al. Design of Anion-Selective PET Probes Based on Azacryptands: the Effect of pH on Binding and Fluorescence Properties[J]. Chem Commun,2017,53(35):4822-4825. | [53] | Costa A I,Pinto H D,Ferreira L F V,et al. Solid-State Sensory Properties of Calix-Poly(Phenylene Ethynylene)s Toward Nitroaromatic Explosives[J]. Sens Actuators B:Chemical,2012,161(1):702-713. | [54] | Yao Q,Lv B,Ji C,et al.Supramolecular Host-Guest System as Ratiometric Fe3+ Ion Sensor Based on Water-Soluble Pillar [5] arene[J]. ACS Appl Mater Interfaces,2017,DOI: | [55] | Dhenadhayalan N,Lee H L,Yadav K,et al.Silicon Quantum Dot-Based Fluorescence Turn-On Metal Ion Sensors in Live Cells[J]. ACS Appl Mater Interfaces,2016,8(36):23953-23962. | [56] | De Silva A P,Gunaratne H Q N,Gunnlaugsson T,et al. Signaling Recognition Events with Fluorescent Sensors and Switches[J]. Chem Rev,1997,97(5):1515-1566. | [57] | Lodeiro C,Pina F. Luminescent and Chromogenic Molecular Probes Based on Polyamines and Related Compounds[J]. Coord Chem Rev,2009,253(9):1353-1383. | [58] | Martinez-Manez R,Sancenón F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions[J]. Chem Rev,2003,103(11):4419-4476. | [59] | Sapsford K E,Berti L,Medintz I L. Materials for Fluorescence Resonance Energy Transfer Analysis:Beyond Traditional Donor-Acceptor Combinations[J]. Angew Chem Int Ed,2006,45(28):4562-4589. | [60] | Xu Z,Yoon J,Spring D R. Fluorescent Chemosensors for Zn2+[J]. Chem Soc Rev,2010,39(6):1996-2006. | [61] | Xu M,Wu S,Zeng F,et al.Cyclodextrin Supramolecular Complex as a Water-Soluble Ratiometric Sensor for Ferric Ion Sensing[J]. Langmuir,2009,26(6):4529-4534. | [62] | Kim J S,Lee S Y,Yoon J,et al.Hyperbranched Calixarenes:Synthesis and Applications as Fluorescent Probes[J]. Chem Commun,2009,(32):4791-4802. | [63] | Wu J,Liu W,Ge J,et al.New Sensing Mechanisms for Design of Fluorescent Chemosensors Emerging in Recent Years[J]. Chem Soc Rev,2011,40(7):3483-3495. | [64] | Sutariya P G,Modi N R,Pandya A,et al.An ICT Based “Turn On/Off” Quinoline Armed Calix[4]arene Fluoroionophore:Its Sensing Efficiency Towards Fluoride from Waste Water and Zn2+ from Blood Serum[J]. Analyst,2012,137(23):5491-5494. | [65] | Kandpal M,Bandela A K,Hinge V K,et al.Fluorescence and Piezoresistive Cantilever Sensing of Trinitrotoluene by an Upper-Rim Tetrabenzimidazole Conjugate of Calix[4]arene and Delineation of the Features of the Complex by Molecular Dynamics[J]. ACS Appl Mater Interfaces,2013,5(24):13448-13456. | [66] | Bandela A K,Bandaru S,Rao C P. A Fluorescent 1,3-Diaminonaphthalimide Conjugate of Calix [4] arene for Sensitive and Selective Detection of Trinitrophenol:Spectroscopy, Microscopy, and Computational Studies, and Its Applicability Using Cellulose Strips[J]. Chem-Eur J,2015,21(38):13364-13374. |
|