Chinese Journal of Applied Chemistry ›› 2026, Vol. 43 ›› Issue (1): 53-66.DOI: 10.19894/j.issn.1000-0518.250177
• Full Papers • Previous Articles Next Articles
Ying ZHOU(
), Wan-Kui BU, Dong ZHANG, Pin-Pin LIU, Guang-Yue LI
Received:2025-04-25
Accepted:2025-09-02
Published:2026-01-01
Online:2026-01-26
Contact:
Ying ZHOU
About author:zhouying.yy@163.comSupported by:CLC Number:
Ying ZHOU, Wan-Kui BU, Dong ZHANG, Pin-Pin LIU, Guang-Yue LI. Preparation of Expanded Perlite-Based Energy Storage Materials and Their Impact on Building Energy Consumption[J]. Chinese Journal of Applied Chemistry, 2026, 43(1): 53-66.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.250177
| Sample | w(Phase change materials)/% | m(CA-PA-OD)/g | m(EP)/g |
|---|---|---|---|
| Ⅰ | 30 | 0.3 | 0.7 |
| Ⅱ | 40 | 0.4 | 0.6 |
| Ⅲ | 50 | 0.5 | 0.5 |
| Ⅳ | 60 | 0.6 | 0.4 |
| Ⅴ | 70 | 0.7 | 0.3 |
| Ⅵ | 80 | 0.8 | 0.2 |
Table 1 The ratio of CA-PA-OD and EP in 6 phase change materials
| Sample | w(Phase change materials)/% | m(CA-PA-OD)/g | m(EP)/g |
|---|---|---|---|
| Ⅰ | 30 | 0.3 | 0.7 |
| Ⅱ | 40 | 0.4 | 0.6 |
| Ⅲ | 50 | 0.5 | 0.5 |
| Ⅳ | 60 | 0.6 | 0.4 |
| Ⅴ | 70 | 0.7 | 0.3 |
| Ⅵ | 80 | 0.8 | 0.2 |
| Sample | m(filter paper before leakage)/g | m(filter paper after leakage)/g | Mass change fraction/% |
|---|---|---|---|
| Ⅰ | 0.334 | 0.337 | 1 |
| Ⅱ | 0.337 | 0.341 | 1 |
| Ⅲ | 0.331 | 0.343 | 4 |
| Ⅳ | 0.332 | 0.357 | 8 |
| Ⅴ | 0.340 | 0.374 | 10 |
| Ⅵ | 0.334 | 0.391 | 17 |
Table 2 Experimental results of leakage rings of samples Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴand Ⅵ before packaging
| Sample | m(filter paper before leakage)/g | m(filter paper after leakage)/g | Mass change fraction/% |
|---|---|---|---|
| Ⅰ | 0.334 | 0.337 | 1 |
| Ⅱ | 0.337 | 0.341 | 1 |
| Ⅲ | 0.331 | 0.343 | 4 |
| Ⅳ | 0.332 | 0.357 | 8 |
| Ⅴ | 0.340 | 0.374 | 10 |
| Ⅵ | 0.334 | 0.391 | 17 |
| Sample | m(filter paper before leakage)/g | m(filter paper after leakage)/g | Mass change fraction/% |
|---|---|---|---|
| Ⅰ | 0.335 | 0.335 | 0 |
| Ⅱ | 0.334 | 0.335 | 0 |
| Ⅲ | 0.341 | 0.341 | 0 |
| Ⅳ | 0.337 | 0.343 | 2 |
| Ⅴ | 0.334 | 0.340 | 2 |
| Ⅵ | 0.336 | 0.369 | 10 |
Table 3 Experimental results of leakage rings of encapsulated samples Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴand Ⅵ
| Sample | m(filter paper before leakage)/g | m(filter paper after leakage)/g | Mass change fraction/% |
|---|---|---|---|
| Ⅰ | 0.335 | 0.335 | 0 |
| Ⅱ | 0.334 | 0.335 | 0 |
| Ⅲ | 0.341 | 0.341 | 0 |
| Ⅳ | 0.337 | 0.343 | 2 |
| Ⅴ | 0.334 | 0.340 | 2 |
| Ⅵ | 0.336 | 0.369 | 10 |
Fig.4 SEM images of expanded perlite carrier (A), unencapsulated CA-PA-OD/EP shaped phase change composite material (B) and encapsulated CA-PA-OD/EP shaped phase change composite material (C)
| Dosage/% | Theoretical dry density/(kg·m-3) | Cement/(kg·m-3) | Fly ash/(kg·m-3) | Water/(kg·m-3) | Shaped phase change material/(kg·m-3) | Foaming agent/(kg·m-3) | Water reducer/(kg·m-3) |
|---|---|---|---|---|---|---|---|
| 0 | 500 | 375 | 42 | 208.5 | 0 | 3.75 | 0.54 |
| 5 | 356.54 | 39.61 | 250.2 | 20.85 | 3.75 | 0.54 | |
| 10 | 337.77 | 37.53 | 291.9 | 41.7 | 3.75 | 0.54 | |
| 15 | 319.01 | 35.45 | 333.6 | 62.55 | 3.75 | 0.54 | |
| 20 | 300.24 | 33.36 | 375.3 | 83.4 | 3.75 | 0.54 |
Table 4 Mix proportion of phase change heat storage foam concrete
| Dosage/% | Theoretical dry density/(kg·m-3) | Cement/(kg·m-3) | Fly ash/(kg·m-3) | Water/(kg·m-3) | Shaped phase change material/(kg·m-3) | Foaming agent/(kg·m-3) | Water reducer/(kg·m-3) |
|---|---|---|---|---|---|---|---|
| 0 | 500 | 375 | 42 | 208.5 | 0 | 3.75 | 0.54 |
| 5 | 356.54 | 39.61 | 250.2 | 20.85 | 3.75 | 0.54 | |
| 10 | 337.77 | 37.53 | 291.9 | 41.7 | 3.75 | 0.54 | |
| 15 | 319.01 | 35.45 | 333.6 | 62.55 | 3.75 | 0.54 | |
| 20 | 300.24 | 33.36 | 375.3 | 83.4 | 3.75 | 0.54 |
| Dosage/% | Thermal conductivity/(W·m-1·K-1) |
|---|---|
| 0 | 0.078 8 |
| 5 | 0.075 0 |
| 10 | 0.073 0 |
| 15 | 0.069 5 |
| 20 | 0.066 0 |
Table 5 Thermal conductivity of phase change thermal storage foam concrete with different content
| Dosage/% | Thermal conductivity/(W·m-1·K-1) |
|---|---|
| 0 | 0.078 8 |
| 5 | 0.075 0 |
| 10 | 0.073 0 |
| 15 | 0.069 5 |
| 20 | 0.066 0 |
| Name of materials for each layer of external wall | Thicknezss/mm | Thermal conductivity/(W·m-1·K-1) | Heat storage coefficient/(W·m-2·K-1) | Thermal resistance/(m2·K·W-1) | Thermal inertia index D=R.S | Correction factor α |
|---|---|---|---|---|---|---|
| Polyethylene waterproof membrane | -- | -- | -- | -- | -- | 1.00 |
| Alkali-resistant glass fiber mesh cloth | -- | -- | -- | -- | -- | 1.00 |
| Thin plaster layer of anti-crack mortar | -- | -- | -- | -- | -- | 1.00 |
| Phase change heat storage foam concrete | 100.0 | 0.060 | 1.169 | 1.667 | 1.95 | 1.00 |
| Adhesive | -- | -- | -- | -- | -- | 1.00 |
| Cement mortar levelling layer | 10.0 | 0.930 | 11.270 | 0.011 | 0.12 | 1.00 |
| Aerated concrete block (B03)-ordinary masonry | 150.0 | 0.110 | 1.640 | 1.091 | 2.24 | 1.25 |
| Sum of all layers of external wall | 260.0 | 2.77 | 4.31 | |||
| External wall thermal resistanceR0=Ri+∑R+Re=2.93 (m2·K)/W | Ri=0.11 (m2·K)/W; Re=0.05 (m2·K)/W | |||||
| External wall heat transfer coefficient | K=1/R0=0.34 W/(m2·K) | |||||
| Solar radiation absorption coefficient | ρ=0.50 | |||||
Table 6 Determination of thermal performance of exterior walls
| Name of materials for each layer of external wall | Thicknezss/mm | Thermal conductivity/(W·m-1·K-1) | Heat storage coefficient/(W·m-2·K-1) | Thermal resistance/(m2·K·W-1) | Thermal inertia index D=R.S | Correction factor α |
|---|---|---|---|---|---|---|
| Polyethylene waterproof membrane | -- | -- | -- | -- | -- | 1.00 |
| Alkali-resistant glass fiber mesh cloth | -- | -- | -- | -- | -- | 1.00 |
| Thin plaster layer of anti-crack mortar | -- | -- | -- | -- | -- | 1.00 |
| Phase change heat storage foam concrete | 100.0 | 0.060 | 1.169 | 1.667 | 1.95 | 1.00 |
| Adhesive | -- | -- | -- | -- | -- | 1.00 |
| Cement mortar levelling layer | 10.0 | 0.930 | 11.270 | 0.011 | 0.12 | 1.00 |
| Aerated concrete block (B03)-ordinary masonry | 150.0 | 0.110 | 1.640 | 1.091 | 2.24 | 1.25 |
| Sum of all layers of external wall | 260.0 | 2.77 | 4.31 | |||
| External wall thermal resistanceR0=Ri+∑R+Re=2.93 (m2·K)/W | Ri=0.11 (m2·K)/W; Re=0.05 (m2·K)/W | |||||
| External wall heat transfer coefficient | K=1/R0=0.34 W/(m2·K) | |||||
| Solar radiation absorption coefficient | ρ=0.50 | |||||
| Annual total radiation/(MJ·m-2) | Total area of collectors/m2 | Collector tilt angle/(°) | Collector azimuth angle/(°) | Compensation area ratio/% | Annual equivalent electricity consumption of solar heating/(kW·h·a-1) |
|---|---|---|---|---|---|
| 5 250.60 | 3 000.00 | 42.00 | 5.00 | 81.00 | 1 417 662.00 |
Table 7 Solar heating system
| Annual total radiation/(MJ·m-2) | Total area of collectors/m2 | Collector tilt angle/(°) | Collector azimuth angle/(°) | Compensation area ratio/% | Annual equivalent electricity consumption of solar heating/(kW·h·a-1) |
|---|---|---|---|---|---|
| 5 250.60 | 3 000.00 | 42.00 | 5.00 | 81.00 | 1 417 662.00 |
| Energy type | Designed building | Reference building | ||
|---|---|---|---|---|
| Heating, ventilation and air conditioning/(kW·h) | E1H | 0 | E01H | 0 |
| Lighting energy consumption/(kW·h) | E1L | 35 390.56 | E0L | 42 503.18 |
| Annual total energy consumption/(kW·h) | B1 | 35 390.56 | B0 | 42 503.18 |
| Annual energy consumption per unit area/(kW·h·m-2) | B1/A | 5.54 | B0/A | 6.65 |
| Energy consumption reduction rate | 16.7% | |||
Table 8 Summary of building calculation results
| Energy type | Designed building | Reference building | ||
|---|---|---|---|---|
| Heating, ventilation and air conditioning/(kW·h) | E1H | 0 | E01H | 0 |
| Lighting energy consumption/(kW·h) | E1L | 35 390.56 | E0L | 42 503.18 |
| Annual total energy consumption/(kW·h) | B1 | 35 390.56 | B0 | 42 503.18 |
| Annual energy consumption per unit area/(kW·h·m-2) | B1/A | 5.54 | B0/A | 6.65 |
| Energy consumption reduction rate | 16.7% | |||
Fig.11 Temperature distribution diagram of the inner and outer walls of the infill wall as they face naturally ventilated rooms (A) and air-conditioned rooms (B)
| Room type | Room area/m2 | Summer condition | Winter condition | Overall evaluation index | Up to standard | ||
|---|---|---|---|---|---|---|---|
| Calculated PPD value/% | Calculated PMV value | Calculated PPD value/% | Calculated PMV value | ||||
| Bedroom | 1 471.96 | 5.03 | 0.04 | 12.28 | -0.59 | Ⅱ | No |
| Living room | 1 494.71 | 5.03 | 0.04 | 12.28 | -0.59 | Ⅱ | No |
| Kitchen | 355.36 | 5.03 | 0.04 | 12.28 | -0.59 | Ⅱ | No |
Table 9 Summary of overall evaluation indicators for artificial cold and heat sources, hot and wet environment in main functional spaces
| Room type | Room area/m2 | Summer condition | Winter condition | Overall evaluation index | Up to standard | ||
|---|---|---|---|---|---|---|---|
| Calculated PPD value/% | Calculated PMV value | Calculated PPD value/% | Calculated PMV value | ||||
| Bedroom | 1 471.96 | 5.03 | 0.04 | 12.28 | -0.59 | Ⅱ | No |
| Living room | 1 494.71 | 5.03 | 0.04 | 12.28 | -0.59 | Ⅱ | No |
| Kitchen | 355.36 | 5.03 | 0.04 | 12.28 | -0.59 | Ⅱ | No |
| [1] | 刘大龙, 李俐瑶, 马茹婷. 居住建筑节能行为的热舒适基础及应用[J]. 建筑科学, 2023, 39(10): 36-42. |
| LIU D L, LI L Y, MA R T. Thermal comfort basis and application of energy-saving behaviors in residential buildings[J]. Build Sci, 2023, 39(10): 36-42. | |
| [2] | 张颖. 布署九大重点任务明确五项保障措施住建部印发《“十四五”建筑节能与绿色建筑发展规划》[J]. 中国勘察设计, 2022(3): 8-9. |
| ZHANG Y. Nine key tasks and five safeguard measures clarified: ministry of Housing and Urban-Rural Development issued the “14th Five-Year” plan for building energy efficiency and green building development[J]. Chin Invest Des, 2022(3): 8-9. | |
| [3] | 李琳, 王宇, 李东旭, 等. 硅藻土基定形相变材料的制备及应用进展[J]. 化工新型材料, 2024, 52(4): 238-243. |
| LI L, WANG Y, LI D X, et al. Progress in preparation and application of diatomite-based shape-stabilized phase change materials[J]. Chem New Mater, 2024, 52(4): 238-243. | |
| [4] | 胡明玉, 李东旭, 吴琼, 等. LA-SA复合相变材料的制备与性能研究[J]. 现代化工, 2023, 43(9): 97-103. |
| HU M Y, LI D X, WU Q, et al. Preparation and properties of LA-SA composite phase change material[J]. Mod Chem Ind, 2023, 43(9): 97-103. | |
| [5] | 张益弘, 陈羽阳, 涂龙龙, 等. 基于水凝胶的定形相变材料制备与性能研究[J]. 高分子学报, 2024(9): 1229-1240. |
| ZHANG Y H, CHEN Y Y, TU L L, et al. Preparation and properties of shape-stabilized phase change material based on hydrogel[J]. Acta Polym Sin, 2024(9): 1229-1240. | |
| [6] | 肖力光, 李赫. 相变储能材料在建筑围护结构领域的应用及研究进展[J]. 化工新型材料, 2024, 52(4): 228-232. |
| XIAO L G, LI H. Application and research progress of phase change energy storage materials in building envelopes[J]. Chem New Mater, 2024, 52(4): 228-232. | |
| [7] | 王若钰, 梁斌, 朱英明, 等. 石蜡基高热导率相变储能材料的制备[J]. 化学试剂, 2023, 45(1): 108-113. |
| WANG R Y, LIANG B, ZHU Y M, et al. Preparation of paraffin-based phase change energy storage material with high thermal conductivity[J]. Chem Reag, 2023, 45(1): 108-113. | |
| [8] | 于文艳, 孟琦, 童浩然. 微胶囊相变材料对砂浆热性能和力学性能的影响[J]. 建筑材料学报, 2023, 26(2): 215-220. |
| YU W Y, MENG Q, TONG H R. Effect of microencapsulated phase change material on thermal and mechanical properties of mortar[J]. J Build Mater, 2023, 26(2) :215-220. | |
| [9] | 胡明玉, 吴琼, 胡佳乐, 等. CaCl2·6H2O/膨胀石墨复合相变材料的制备及研究[J]. 功能材料, 2023, 54(3): 3156-3161. |
| HU M Y, WU Q, HU J L, et al. Preparation and study of CaCl2·6H2O/expanded graphite composite phase change material[J]. J Funct Mater, 2023, 54(3): 3156-3161. | |
| [10] | 庄英, 林韶晖, 冯献社, 等. 二元/三元脂肪酸—脂肪醇共晶相变储能材料模拟分析及实验研究[J]. 信息记录材料, 2023, 24(11): 22-26. |
| ZHUANG Y, LIN S H, FENG X S, et al. Simulation analysis and experimental study on binary/ternary fatty acid-fatty alcohol eutectic phase change energy storage materials[J]. Inf Rec Mater, 2023, 24(11): 22-26. | |
| [11] | 成鑫磊, 穆锐, 孙涛, 等. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024(5): 69-83. |
| CHENG X L, MU R, SUN T, et al. Encapsulated preparation of solid-liquid phase change materials and research progress in building applications[J]. Mater Rep, 2024(5): 69-83. | |
| [12] | 赖蔓崎, 王艳, 曹雄金, 等. 建筑围护结构中辐射制冷材料与相变材料耦合应用的研究进展[J]. 化工新型材料, 2024, 52(S02): 332-337. |
| LAI M Q, WANG Y, CAO X J, et al. Research progress on coupled application of radiative cooling materials and phase change materials in building envelopes[J]. New Chem Mater, 2024, 52(S02):332-337. | |
| [13] | PANG Y, CHEN J, SUN J, et al. Cellulose nanofiber-enhanced dynamic hydrogels for high-efficiency phase change encapsulation[J]. Nat Commun, 2024, 15(1): 4821. |
| [14] | DISALE A, NAYAK C, SURYAWANSHI N, et al. Fly ash-based geopolymer encapsulants for thermal energy storage: synergistic effects of metakaolin and silica fume[J]. Cem Concr Compos, 2024, 145: 105370. |
| [15] | LU B, ZHANG Z, ZHU H, et al. Nano-silica reinforced latex coatings for leakage-proof phase change composites[J]. Energy Buildings, 2025, 311: 112005. |
| [16] | 李辉, 陈锋, 匡渝阳, 等. 外掺剂对泡沫混凝土影响及冻融-循环破坏研究[J]. 混凝土, 2023(5): 115-120. |
| LI H, CHEN F, KUANG Y Y, et al. Effects of admixtures on foam concrete and freeze-thaw cyclic damage mechanism[J]. Concrete, 2023(5): 115-120. | |
| [17] | 李琳, 王宇, 马玉莹, 等. 基于正交试验的泡沫混凝土导热性能和孔结构研究[J]. 硅酸盐通报, 2024, 43(8): 2888-2896. |
| LI L, WANG Y, MA Y Y, et al. Thermal conductivity and pore structure of foam concrete based on orthogonal experiments[J]. Silicate Bull, 2024, 43(8): 2888-2896. |
| [1] | Jie-Wei HE, Shao-Wei DUAN, Xiao-Chuan LI. Design and Application Research of Shape-Stabilized Phase Change Materials for Building Energy Conservation [J]. Chinese Journal of Applied Chemistry, 2024, 41(12): 1780-1789. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||