| [1] |
FEIG D I, KANG D H, JOHNSON R J. Uric acid and cardiovascular risk[J]. N Engl J Med, 2008, 359(17): 1811-1821.
|
| [2] |
杨俊红. 基于贵金属复合材料对尿液中生物标志物的SERS检测[D].上海:上海师范大学,2024.
|
|
YANG J H. SERS detection of biomarkers in urine based on noble metal composites[D]. Shanghai: Shanghai Norm University, 2024.
|
| [3] |
LI J W, HUANG X J, WEI S L. Copper oxide/carboxylated carbon nanosheet modified glassy carbon electrode for sensitive detection of uric acid[J]. Chem Res Appl, 2024, 36(7): 1451-1457.
|
| [4] |
HU F X, HU T, LI C M, et al. Single-atom cobalt-based electrochemical biomimetic uric acid sensor with wide linear range and ultralow detection limit[J]. Nano-Micro Lett, 2021, 13(1): 105-117.
|
| [5] |
CAI W, LAI J, LAI T, et al. Controlled functionalization of flexible graphene fibers for the simultaneous determination of ascorbic acid, dopamine and uric acid[J]. Sens Actuators B: Chem, 2016, 224: 225-232.
|
| [6] |
AZMI N E, RAMLI N I, ABDULLAH J, et al. A simple and sensitive fluorescence-based biosensor for the determination of uric acid using H2O2-sensitive quantum dots/dual enzymes[J]. Anal Methods, 2015, 67: 129-133.
|
| [7] |
SHA R, VISHNU N, BADHULIKA S. MoS2-based ultra-low-cost, flexible, non-enzymatic and non-invasive electrochemical sensor for highly selective detection of uric acid in human urine samples[J]. Sens Actuators B: Chem, 2019, 279: 53-60.
|
| [8] |
ZHANG F F, WANG X L, AI S Y, et al. Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor[J]. Anal Chim Acta, 2004, 519: 155-160.
|
| [9] |
ZHAO L, LI H, GAO S, et al. MgO nanobelt-modified graphene-tantalum wire electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid[J]. Electrochim Acta, 2015, 168: 191-198.
|
| [10] |
REDDY Y V M, SRAVANI B, AGARWAL S, et al. Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly(DPA)/SiO2@Fe3O4 modified carbon paste electrode[J]. J Electroanal Chem, 2018, 820: 168-175.
|
| [11] |
WANG R N, PU S D, LI S R, et al. Research progress on carbon nanomaterial-based sensors for the detection of ascorbic acid, uric acid and dopamine[J]. Micro Nano Electron Technol, 2023, 60(5): 671-681.
|
| [12] |
田宇红, 汤艺伟, 杜壮壮, 等. 海藻渣多孔炭的制备及其电化学性能研究[J]. 功能材料, 2024, 55(11): 11209-11217.
|
|
TIAN Y H, TANG Y W, DU Z Z, et al. Preparation of porous carbon from seaweed residue and its electrochemical performance[J]. Funct Mater, 2024, 55(11): 11209-11217.
|
| [13] |
PENG B G, CUI J W, WANG Y, et al. CeO2- x/C/rGO nanocomposites derived from Ce-MOF and graphene oxide as a robust platform for highly sensitive uric acid detection[J]. Nanoscale, 2018, 10: 1939-1945.
|
| [14] |
ARORA K, TOMAR M, GUPTA V. Reagentless uric acid biosensor based on Ni microdiscs-loaded NiO thin film matrix[J]. Analyst, 2014, 139: 4606.
|
| [15] |
YANG Y J, JO A, LEE Y M, et al. Electrodeposited nanoporous ruthenium oxide for simultaneous quantification of ascorbic acid and uric acid using chronoamperometry at two different potentials[J]. Sens Actuators B: Chem, 2018, 255: 316-324.
|
| [16] |
贾宏亮, 赵建伟, 秦丽溶, 等. 基于镍丝负载氧化镍纳米片的尿酸生物传感器[J]. 高等学校化学学报, 2019, 40(2): 240-245.
|
|
JIA H L, ZHAO J W, QIN L R, et al. Nickel wire-loaded NiO nanosheet-based uric acid biosensor[J]. Chem J Chin Univ, 2019, 40(2): 240-245.
|
| [17] |
MA J, JIANG Y, SHEN L, et al. Wearable biomolecule smart sensors based on one-step fabricated Berlin green printed arrays[J]. Biosens Bioelectron, 2019, 144: 111637.
|