Chinese Journal of Applied Chemistry ›› 2024, Vol. 41 ›› Issue (11): 1605-1619.DOI: 10.19894/j.issn.1000-0518.240141
• Full Papers • Previous Articles Next Articles
Wen-Qi NIU1, Feng-Yun MA1(), Bin XIA1, Jing-Mei LIU2, Shuang-Jie YIN3
Received:
2024-04-28
Accepted:
2024-08-07
Published:
2024-11-01
Online:
2024-12-04
Contact:
Feng-Yun MA
About author:
nwq515298@163.comSupported by:
CLC Number:
Wen-Qi NIU, Feng-Yun MA, Bin XIA, Jing-Mei LIU, Shuang-Jie YIN. Oxidative Degradation of Methylisothiazolinone Enhanced by Hydrodynamic Cavitation Field[J]. Chinese Journal of Applied Chemistry, 2024, 41(11): 1605-1619.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.240141
Num | Pressure at the entrance/MPa | Flow of the main road/(L·h-1) | Flow velocity at the necking point/(m·s-1) | Cavitation number |
---|---|---|---|---|
1 | 0.1 | 121.4 | 19.09 | 0.49 |
2 | 0.2 | 144.1 | 22.66 | 0.35 |
3 | 0.3 | 168.6 | 26.52 | 0.25 |
4 | 0.4 | 189.7 | 29.83 | 0.20 |
5 | 0.5 | 211.3 | 33.23 | 0.16 |
Table 1 Flow characteristics of cavitation device under different inlet pressures
Num | Pressure at the entrance/MPa | Flow of the main road/(L·h-1) | Flow velocity at the necking point/(m·s-1) | Cavitation number |
---|---|---|---|---|
1 | 0.1 | 121.4 | 19.09 | 0.49 |
2 | 0.2 | 144.1 | 22.66 | 0.35 |
3 | 0.3 | 168.6 | 26.52 | 0.25 |
4 | 0.4 | 189.7 | 29.83 | 0.20 |
5 | 0.5 | 211.3 | 33.23 | 0.16 |
Substance | Mass to charge ratio (measured value) | Mass to charge ratio (theoretical value) | Error | Molecular formula | Structural formula |
---|---|---|---|---|---|
MIT | 116.016 6 | 116.016 5 | 0.86 | C4H5NOS | |
TP1 | 187.999 2 | 187.998 8 | 2.13 | C4H7NO4S | |
TP2 | 233.042 7 | 233.043 8 | -4.72 | C4H9NO7S | |
TP3 | 243.081 4 | 243.082 3 | -4.11 | C3H7NO4 | |
TP4 | 203.102 3 | 203.102 6 | -1.48 | C4H7NO2 | |
TP5 | 142.047 7 | 142.047 5 | 1.41 | C4H9NO3 | |
TP6 | 132.029 7 | 132.029 1 | 4.54 | C4H5NO4 | |
TP7 | 271.006 3 | 271.005 3 | 3.69 | C3H5NO3S | |
TP8 | 191.973 5 | 191.972 7 | 4.17 | C3H7NO4S | |
TP9 | 194.011 8 | 194.011 7 | 0.52 | C4H3NO4S |
Table 2 Parameters related to intermediate products
Substance | Mass to charge ratio (measured value) | Mass to charge ratio (theoretical value) | Error | Molecular formula | Structural formula |
---|---|---|---|---|---|
MIT | 116.016 6 | 116.016 5 | 0.86 | C4H5NOS | |
TP1 | 187.999 2 | 187.998 8 | 2.13 | C4H7NO4S | |
TP2 | 233.042 7 | 233.043 8 | -4.72 | C4H9NO7S | |
TP3 | 243.081 4 | 243.082 3 | -4.11 | C3H7NO4 | |
TP4 | 203.102 3 | 203.102 6 | -1.48 | C4H7NO2 | |
TP5 | 142.047 7 | 142.047 5 | 1.41 | C4H9NO3 | |
TP6 | 132.029 7 | 132.029 1 | 4.54 | C4H5NO4 | |
TP7 | 271.006 3 | 271.005 3 | 3.69 | C3H5NO3S | |
TP8 | 191.973 5 | 191.972 7 | 4.17 | C3H7NO4S | |
TP9 | 194.011 8 | 194.011 7 | 0.52 | C4H3NO4S |
Num | ρ1,0/(mg·L-1) | ν0/(mg·min-1) | ln ρ1,0 | ln ν0 |
---|---|---|---|---|
1 | 15 | 0.899 | 2.708 | -0.106 |
2 | 25 | 1.056 | 3.555 | 0.054 |
3 | 45 | 1.089 | 3.807 | 0.085 |
4 | 55 | 1.073 | 4.007 | 0.070 |
Table 3 Hydraulic cavitation combined with H2O2 treatment data
Num | ρ1,0/(mg·L-1) | ν0/(mg·min-1) | ln ρ1,0 | ln ν0 |
---|---|---|---|---|
1 | 15 | 0.899 | 2.708 | -0.106 |
2 | 25 | 1.056 | 3.555 | 0.054 |
3 | 45 | 1.089 | 3.807 | 0.085 |
4 | 55 | 1.073 | 4.007 | 0.070 |
Temperature range/℃ | Regression equation | Heating rate/(℃·min-1) |
---|---|---|
8~32 | T=2.4t+8, R2=1.00 | 2.400 |
32~43 | T=0.355t+29.5, R2=0.94 | 0.355 |
43~47 | T=0.19t+35.27, R2=0.99 | 0.190 |
Table 4 The equations of temperature rising rate by regression
Temperature range/℃ | Regression equation | Heating rate/(℃·min-1) |
---|---|---|
8~32 | T=2.4t+8, R2=1.00 | 2.400 |
32~43 | T=0.355t+29.5, R2=0.94 | 0.355 |
43~47 | T=0.19t+35.27, R2=0.99 | 0.190 |
Temperature range/℃ | Reaction order | Activating energy/(kJ·mol-1) | Exponential factor | 2RT/E |
---|---|---|---|---|
8~32 | 0 | 31.127 | 3.93×103 | 0.163 |
32~43 | 0.58×103 | 0.169 |
Table 5 Kinetic parameters
Temperature range/℃ | Reaction order | Activating energy/(kJ·mol-1) | Exponential factor | 2RT/E |
---|---|---|---|---|
8~32 | 0 | 31.127 | 3.93×103 | 0.163 |
32~43 | 0.58×103 | 0.169 |
1 | 张莹莹, 唐星, 刘说, 等. 甲基(氯)异噻唑啉酮的合成工艺优化与产品表征[J]. 当代化工, 2023, 52(10): 2299-2304. |
ZHANG Y Y, TANG X, LIU S, et al. Synthesis process optimization and product characterization of methyl(chlorine)isothiazole linone[J]. Contemp Chem Ind, 2023, 52(10): 2299-2304. | |
2 | 曲振斌. 异噻唑啉酮类杀菌剂的应用探究[J]. 化工设计通讯, 2016, 42(9): 103. |
QU Z B. To explore the application of isothiazolinone fungicides[J]. Chem Eng Design Commun, 2016, 42(9): 103. | |
3 | 王磊, 武绍峰, 顾学斌. 异噻唑啉酮类杀菌剂的应用研究[J]. 工业微生物, 2015, 45(5): 60-64. |
WANG L, WU S F, GU X B. Advances in research and application of isothiazolone biocides[J]. Ind Microbiol, 2015, 45(5): 60-64. | |
4 | GARCÍA-GAVÍN J, VANSINA S, KERRE S, et al. Methylisothiazolinone, an emerging allergen in cosmetics? [J]. Contact Dermatitis, 2010, 63(2): 96-101. |
5 | 吕鹏, 吴巍, 刘丽丽, 等. 甲基异噻唑啉酮对斑马鱼胚胎的急性毒性和机制研究[J]. 生态毒理学报, 2017, 12(5): 260-269. |
LV P, WU W, LIU L L, et al. Acute toxicity and toxicology of methylisothiazolinone to zebrafish embryos[J]. Asian J Ecotoxicol, 2017, 12(5): 260-269. | |
6 | MARDONES L E, LEGNOVERDE M S, PEREYRA A M, et al. Long-lasting isothiazolinone-based biocide obtained by encapsulation in micron-sized mesoporous matrices[J]. Prog Org Coat, 2018, 119: 155-163. |
7 | KANDAVELU V, KASTIEN H, THAMPI K R. Photocatalytic degradation of isothiazolin-3-ones in water and emulsion paints containing nanocrystalline TiO2 and ZnO catalysts[J]. Appl Catal B: Environ, 2004, 48(2): 101-111. |
8 | 王英才. 电化学技术处理甲基异噻唑啉酮的研究及其在反渗透浓水中的应用[D]. 天津: 天津大学, 2018. |
WANG Y C. Study on electrochemical treatment of methyl isothiazolinone and its application in reverse osmosis concentrated water[D]. Tianjin: Tianjin University, 2018. | |
9 | 蔡军, 淮秀兰, 李勋锋. 湍流作用下可压缩液体中空化泡的动力学特性[J]. 科学通报, 2010, 55(10): 857-866. |
CAI J, HUAI X L, LI X F. Investigation on cavitation bubble dynamics in compressible liquid under turbulence[J]. Chin Sci Bull, 2010, 55(10): 857-866. | |
10 | 冯中营, 吴胜举, 王烽宇, 等. 低能耗、高效率的无泵水力空化联合臭氧降解罗丹明B[J]. 水处理技术, 2023, 49(5): 110-113, 119. |
FENG Z Y, WU S J, WANG F Y, et al. Degradation of rhodamine B by economical and efficient hydrodynamic cavitation without pump combined with ozone[J]. Technol Water Treat, 2023, 49(5): 110-113, 119. | |
11 | 李明义, 朱洋, 张文斌, 等. 文丘里管内NaOH溶液的空化现象及其诱发的压力脉动特征分析[J]. 江苏大学学报(自然科学版), 2023, 44(1): 104-111. |
LI M Y, ZHU Y, ZHANG W B, et al. Cavitation phenomenon and cavitation-induced pressure fluctuations in NaOH solutions passing through Venturi pipe[J]. J Jiangsu Univ(Nat Sci Ed), 2023, 44(1): 104-111. | |
12 | WANG K, JIN R Y, QIAO Y N, et al. The removal of rhodamine B by H2O2 or ClO2 combined with hydrodynamic cavitation[J]. Water Sci Technol, 2019, 80(8): 1571-1580. |
13 | PATIL P B, BHANDARI V M, RANADE V V. Improving efficiency for removal of ammoniacal nitrogen from wastewaters using hydrodynamic cavitation[J]. Ultrason Sonochem, 2021, 70: 105306. |
14 | THANEKAR P, GARG S, GOGATE P R. Hybrid treatment strategies based on hydrodynamic cavitation, advanced oxidation processes, and aerobic oxidation for efficient removal of naproxen[J]. Ind Eng Chem Res, 2019, 59(9): 4058-4070. |
15 | 海青, 陈伟政, 颜开. 新型文丘里空化器及其空化特性的数值模拟[J]. 船舶力学, 2023, 27(10): 1464-1474. |
HAI Q, CHEN W Z, YAN K. Numerical simulation study on the cavitation flow field characteristics of novel Venturi tube[J].J Ship Mechan, 2023, 27(10): 1464-1474. | |
16 | PANDA D,MANICKAM S. Hydrodynamic cavitation assisted degradation of persistent endocrine-disrupting organochlorine pesticide dicofol: optimization of operating parameters and investigations on the mechanism of intensification[J]. Ultrason Sonochem, 2019, 51: 526-532. |
17 | 王勇, 丁志瑶, 李明, 等. 环形狭缝型旋转式水力空化器的空化特性与降解能力[J]. 农业工程学报, 2023, 39(17): 71-79. |
WANG Y, DING Z Y, LI M, et al. Cavitation characteristics and degradation capability of an annular slitrotating hydraulic cavitation generator[J]. Transact Chin Soc Agric Eng, 2023, 39(17): 71-79. | |
18 | 张承昕, 徐昊, 王余莲, 等. 纳米金@石墨烯复合多孔材料还原4-硝基苯酚[J]. 中国粉体技术, 2023, 29(4): 80-93. |
ZHANG C X, XU H, WANG Y L, et al. Reduction of 4-nitrophenol with nano-gold@graphene composite porous material[J]. China Powder Sci Technol, 2023, 29(4): 80-93. | |
19 | HUNG C M, HUANG C P, CHEN C W, et al. Hydrodynamic cavitation activation of persulfate for the degradation of polycyclic aromatic hydrocarbons in marine sediments[J]. Environ Pollution, 2021, 286: 117245. |
20 | 杨思静. 水力空化强化ClO2破解甲基橙和苯并[a]芘机理研究[D]. 太原: 中北大学, 2018. |
YANG S J. Study on electrochemical treatment of methyl isothiazolinone and its application in reverse osmosis concentrated water [D]. Taiyuan: North University of China, 2018. | |
21 | 黄永春, 李晴, 邓冬梅, 等. 水力空化深度处理焦化废水的实验研究[J]. 工业水处理, 2017, 37(4): 53-57. |
HUANG Y C, LI Q, DENG D M, et al. Experimental research on the advanced treatment of coking wastewater by hydrodynamic cavitation[J]. Ind Water Treat, 2017, 37(4): 53-57. | |
22 | 徐世贵, 刘月娥, 王金榜, 等. 水力空化-Fenton氧化联合超声吸附处理煤气化废水[J]. 化工环保, 2019, 39(6): 634-640. |
XU S G, LIU Y E, WANG J B, et al. Treatment of coal gasification wastewater by hydrodynamic cavitation-Fenton oxidation combined with ultrasonic adsorption[J]. Environ Protection Chem Ind, 2019, 39(6): 634-640. | |
23 | YI L D, LI B Q, SUN Y N, et al. Degradation of norfloxacin in aqueous solution using hydrodynamic cavitation: optimization of geometric and operation parameters and investigations on mechanism[J]. Separation Purification Technol, 2021, 259: 118166. |
24 | THANEKAR P, LAKSHMI N J, SHAH M, et al. Degradation of dimethoate using combined approaches based on hydrodynamic cavitation and advanced oxidation processes[J]. Proc Safety Environ Protect, 2020, 143: 222-230. |
25 | RAUT-JADHAV S, SAINI D, SONAWANE S, et al. Effect of process intensifying parameters on the hydrodynamic cavitation based degradation of commercial pesticide (methomyl) in the aqueous solution[J]. Ultrason Sonochem, 2016, 28: 283-293. |
26 | WU Z L, TAGLIAPIETRA S, GIRAUDO A, et al. Harnessing cavitational effects for green process intensification[J]. Ultrasonics Sonochem, 2019, 52: 530-546. |
27 | MUKHERJEE A, MULLICK A, TEJA R, et al. Performance and energetic analysis of hydrodynamic cavitation and potential integration with existing advanced oxidation processes: a case study for real life greywater treatment[J]. Ultrason Sonochem, 2020, 66: 105-116. |
28 | 陈吉超, 马凤云, 刘景梅, 等. 水力空化场下苯-甲醇低温烷基化制备二甲苯[J]. 石油学报(石油加工), 2021, 37(1): 190-200. |
CHEN J C, MA F Y, LIU J M, et al. Low temperature alkylation of benzene and methanol in hydrocavitation field[J]. Acta Petrolei Sin (Petroleum Proc Section), 2021, 37(1): 190-200. | |
29 | WANG J H, WANG J, YUAN R F, et al. Degradation of acid red 73 wastewater by hydrodynamic cavitation combined with ozone and its mechanism[J]. Environ Res, 2022, 210: 112954. |
30 | PANDA D, MANICKAM S. Hydrodynamic cavitation assisted degradation of persistent endocrine-disrupting organochlorine pesticide dicofol: optimization of operating parameters and investigations on the mechanism of intensification[J]. Ultrason Sonochem, 2019, 51: 526-532. |
31 | GENG M, THAGARD S M. The effects of externally applied pressure on the ultrasonic degradation of rhodamine B[J]. Ultrason Sonochem, 2013, 20(1): 618-625. |
32 | 李松林, 周亚平, 刘俊吉, 等. 物理化学[M]. 北京: 高等教育出版社, 2009. |
LI S L, ZHOU Y P, LIU J J, et al. Physical chemistry[M]. Beijing: Higher Education Press, 2009. | |
33 | WANG H Z. Study on the kinetics of toluene disproportionation in H-IDG (ZSM-5) zeolite[J]. J Fuel Chem Technol, 1983, 11(4): 86-91. |
[1] | Zhen-jian JIA, Xi HAN, Jie ZHANG. Preparation and Photocatalytic Performance of Ruthenium Dioxide/Titanium Dioxide Composite Catalyst [J]. Chinese Journal of Applied Chemistry, 2024, 41(9): 1324-1332. |
[2] | Tian-Li SUN, Guo ZHU, Hai HE, Bing-Kun HUANG, Zhao-Kun XIONG, Bo LAI. Research Prospect of Single-Atom Catalysts for Fenton-Like Water Treatment [J]. Chinese Journal of Applied Chemistry, 2024, 41(2): 217-229. |
[3] | Jian-Hua ZHENG, Zhen-Ping GUAN, Guo-Yu LIU, Xiang-Yu CAO, Shun-Ji ZHENG, Mei-Yan GUAN. Enhanced Photodegradation Performance of Flower-like MnCo2O4 with Persulfate Under Visible Light [J]. Chinese Journal of Applied Chemistry, 2023, 40(7): 1034-1043. |
[4] | Fang-Xie SHEN, Xiang WAN, Wei-Chao WANG. Volatile Organic Compounds Degradation at Room Temperature on Mn-mullite YMn2O5 Catalyst [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 888-895. |
[5] | Ye LIU, Shao-Bo GUO, Yan-Li LIANG, Hong-Guang GE, Jian-Qi MA, Zhi-Feng LIU, Bo LIU. Preparation and Catalytic Performance of Core‑Shell CuFe2O4@NH2@Pt Nanocomposites [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1237-1245. |
[6] | Sheng-Jie LIU, Yong-Jie YE, Yin-Yi LIU, Shu-Man LIN, Hao-Yuan XIE, Wen-Ting LIU, Wei-Qin XU. Preparation of Uniformly Loaded Cu3P Nanoparticles in Porous Carbon Based on Copper Foam and Their Photocatalytic Performance for Dye Degradation [J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1090-1097. |
[7] | Xiao-Li ZHANG, Yu-Mei PENG, Qing-Wei WANG, Li-Xia QIN, Xiao-Xia LIU, Shi-Zhao KANG, Xiang-Qing LI. Construction of Nano Ag Modified TiO2 Nanotube Array Substrate for Surface Enhanced Raman Scattering Detection and Degradation of Tetracycline Hydrochloride [J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1147-1156. |
[8] | Yi-Xin XU, Shuang WANG, Jing QUAN, Wan-Ting GAO, Tian-Qun SONG, Mei YANG. Preparation of Molybdenum Disulfide Quantum Dots/Reduced Graphene Oxide Composites and Their Photocatalytic Degradation of Organic Dyes, Tetracyclines and Cr(VI) [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 769-778. |
[9] | Xiao-Song ZHA, Lin ZHANG, Yuan-Jie WENG, Zhi-Liang FENG, Su-Wen JIN. Reductive Degradation of N⁃Nitrosodimethylamine in Water by Ultraviolet Advanced Reduction Processes [J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 451-460. |
[10] | Yu-Feng ZHOU, Chuan-Wei ZHOU, Tong-Ze HU, Zhan-Peng DUAN, Hao-Tong WANG, Shu-Yun SHI. Synthesis of Fe/V‑Sb2O3 Composites and UV‑light Catalytic Degradation of Pharmaceutical Wastewater [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1572-1578. |
[11] | Ying ZHAO, Yi-Jia SHAO, Luo-Qian LI, Jian-Wei REN, Shi-Jun LIAO. Research Progress on the Degradation Mechanism and Cycle Stability Improvement of Lithium-Rich Cathode Materials [J]. Chinese Journal of Applied Chemistry, 2022, 39(02): 205-222. |
[12] | HE Quan-Bao, HU Zheng, GE Ming. Research Progress on Photo-degradation of Antibiotics in Water by BiOX(X=Cl,Br,I) Composite Photocatalytic Materials [J]. Chinese Journal of Applied Chemistry, 2021, 38(7): 754-766. |
[13] | ZHAO Xing-Peng, WANG Ya-Qiao, GAO Sheng-Wang, ZHU Jian-Chao, WANG Guo-Ying, XIA Xun-Feng, WANG Hong-Liang, WANG Shu-Ping. Synthesis of BiOBr/CeO2 Composites for Photocatalytic Degradation of Sulfisoxazole [J]. Chinese Journal of Applied Chemistry, 2021, 38(4): 422-430. |
[14] | HUO ZhaoHui, YANG Xiaoshan, CHEN Xiaoli, ZHANG Gang, YIN Wei, CAO Manli, SHI Lei, QIU Yanxuan. Preparation of Ag/Two-Dimensional Graphitic Carbon Nitride/Reduced Graphene Oxide Composite and Its Photocatalytic Degradation of Antibiotics [J]. Chinese Journal of Applied Chemistry, 2020, 37(4): 471-480. |
[15] | HEI Jiahui, YANG Lining, LI Jun. Synthesis and Photocatalysis of Metal Complexes with Schiff Base Derived from 2-Thiophene Carboxaldehyde and Ethylenediamine [J]. Chinese Journal of Applied Chemistry, 2019, 36(8): 949-957. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||