[1] 魏玉瑶, 孙子乔, 任昊慧, 等. 微液滴生成方法研究进展[J]. 分析化学, 2019, 47(6): 10-19. WEI Y Y, SUN Z Q, REN H H, et al. Advances in microdroplet generation methods[J]. Chinese J Anal Chem, 2019, 47(6): 10-19. [2] 陈九生, 蒋稼欢. 微流控液滴技术:微液滴生成与操控[J]. 分析化学, 2012, 40(8): 1293-1300. CHEN J S, JIANG J H. Microfluidic droplet technology[J]. Chinese J Anal Chem, 2012, 40(8): 1293-1300. [3] THORSEN T, ROBERTS R W, Arnold F H, et al. Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Phys Rev Lett, 2001, 86(18):4163-4166. [4] TAN S H, SEMIN B T, BARET J C. Microfluidic flow-focusing in AC electric fields[J]. Lab Chip, 2014, 14(6): 1099-1106. [5] YANG D P, HUANG J R, ZHANG L J, et al. An unusual zinc substrate-induced self-construction route to various hierarchical architectures of hydrated tungsten oxide[J]. Chem Commun, 2010, 46(25): 4556-4558. [6] PARK S Y, WU T H, CHEN Y. High-speed droplet generation on demand driven by pulse laser-induced cavitation[J]. Lab Chip, 2011, 11(6): 1010. [7] GU H, MURADE C U, Duits M H G, et al. A microfluidic platform for on-demand formation and merging of microdroplets using electric control[J]. Biomicrofluidics, 2011, 5(1): 11101. [8] RODRIGUEZ-RODRIGUEZ J, SEVILLA A, MANUEL G J, et al. Generation of microbubbles with applications to industry and medicine[J]. Annu Rev Fluid Mech, 2015, 47(1): 405-429. [9] CHOU W L, LEE P Y, YANG C L, et al. Recent advances in applications of droplet microfluidics[J]. Micromachines, 2015, 6(9): 1249-1271. [10] 成一诺, 陈子浩, 李锦帆.基于微流控的现代生物医学检测技术概述[J]. 应用化工, 2018, 47(6): 1227-1231. CHENG Y N, CHEN Z H, LI J F. Overview of modern biomedical detection technology based on microfluidic[J]. Appl Chem Ind, 2018, 47(6): 1227-1231. [11] MOISEEVA E V, FLETCHER A A, HARNETT C K. Thin-film electrode based droplet detection for microfluidic systems[J]. Sens Actuators B Chem, 2011, 155(1): 408-414. [12] ZHU Y, FANG Q. Analytical detection techniques for droplet microfluidics-a review[J]. Anal Chim Acta, 2013, 787: 24-35. [13] NIU X, ZHANG M, PENG S, et al. Real-time detection, control, and sorting of microfluidic droplets[J]. Biomicrofluidics,2007, 1(4): 44101. [14] NISISAKO T , TORII T , HIGUCHI T. Droplet formation in a microchannel network[J]. Lab Chip, 2002, 2(1): 24. [15] 张井志, 陈武铠, 周乃香, 等. T 型微通道内液滴形成过程及长度的实验研究[J]. 浙江大学学报(工学版), 2020, 54(5): 1007-1013. ZHANG J Z, CHEN W K, ZHOU N X, et al. Experiment study on formation and length of droplets in T-junction microchannels[J]. J Zhejiang Univ(Eng Sci), 2020, 54(5): 1007-1013. [16] ANNA S L, BONTOUX N, STONE H A. Formation of dispersions using “flow focusing” in microchannels[J]. Appl Phys Lett, 2003, 82(3): 364-366. [17] JOANICOT M, AJDARI A. Droplet control for microfluidics[J]. Appl Phys Sci, 2005, 309(5736): 887-888. [18] 刘赵淼, 杨洋. 几何构型对流动聚焦生成微液滴的影响[J]. 力学学报, 2016,48(4): 867-876. LIU Z M, YANG Y. Influence of geometry configurations on the microdroplets in flow focusing microfluidics[J]. Chinese J Theor Appl Mech, 2016, 48(4): 867-876. [19] CRAMER C, FISCHER P, WINDHAB E J. Drop formation in a co-flowing ambient fluid[J]. Chem Eng Sci,2004, 59(15): 3045-3058. [20] UTADA A S, FERNANDEZ-NIEVES A, STONE H A, et al. Dripping to jetting transitions in coflowing liquid streams[J]. Phys Rev Lett, 2007, 99(9): 094502. [21] CHEN H, ZHAO Y, LI J, et al. Reactions in double emulsions by flow-controlled coalescence of encapsulated drops[J]. Lab Chip, 2011, 11(14): 2312-2315. [22] 王洪, 郑杰, 闫延鹏,等. 基于T型共流聚焦法的液滴生成技术[J]. 化工进展, 2020(5): 291-298. WANG H, ZHENG J, YAN Y P, et al. Droplet generation technology based on T-type cocurrent focusing method[J]. Chem Ind Eng Prog, 2020(5): 291-298. [23] LEE C P, LAN T S, LAI M F. Fabrication of two-dimensional ferrofluid microdroplet lattices in a microfluidic channel[J]. J Appl Phys, 2014, 115(17): 17B527. [24] CHURSKI K, MICHALSKI J, GARSTECKI P. Droplet on demand system utilizing a computer controlled microvalve integrated into a stiff polymeric microfluidic device[J]. Lab Chip, 2010, 10(4): 512-518. [25] NGUYEN N T, TING T H, YAP Y F, et al. Thermally mediated droplet formation in microchannels[J]. Appl Phys Lett, 2007, 91(8): s10404. [26] BAROUD C N, DELVILLE J P, GALLAIRE F, et al. Thermocapillary valve for droplet production and sorting[J]. Phys Rev E:Stat, Nonlinear, Soft Matter Phys, 2007,75(4): 046302. [27] HAO G, MICHAEL H G D, FRIEDER M. A hybrid microfluidic chip with electrowetting functionality using ultraviolet(UV)-curable polymer[J]. Lab Chip, 2010, 10(12): 1550-1556. [28] LINK D R, ERWAN GRASLAND-MONGRAIN, DURI A, et al. Electric control of droplets in microfluidic devices[J]. Angew Chem, 2010, 45(16): 2556-2560. [29] LIU J, TAN S H, YAP Y F, et al. Numerical and experimental investigations of the formation process of ferrofluid droplets[J]. Microfluid Nanofluid, 2011, 11(2): 177-187. [30] TAN S H, NGUYEN N T, YOBAS L,et al. Formation and manipulation of ferrofluid droplets at a microfluidic T-junction[J]. J Micromech Microeng, 2010, 20(4): 045004. [31] ZENG S, LI B, SU X, et al. Microvalve-actuated precise control of individual droplets in microfluidic devices[J]. Lab Chip, 2009, 9(10): 1340-1343. [32] CASTRO-HERNANDEZ E, GARCIA-SANCHEZ P, TAN S H, et al. Breakup length of AC electrified jets in a microfluidic flowfocusing junction[J]. Microfluid Nanofluid, 2015, 19(4): 787-794. [33] SRIVASTAVA N, BURNS M A. Electronic drop sensing in microfluidic devices:automated operation of a nanoliter viscometer[J]. Lab Chip, 2006, 6(6): 744-751. [34] HUEBNER A, SRISA-ART M, HOLT D. Quantitative detection of protein expression in single cells using droplet microfluidics[J]. Chem Comm, 2007(12): 1218-1220. [35] CAHILL B P, LAND R, NACKE T, et al. Contactless sensing of the conductivity of aqueous droplets in segmented flow[J]. Sens Actuators B, 2011, 159(1): 286-293. [36] TAO D, CÁTIA B. Capacitance variation induced by microfluidic two-phase flow across insulated interdigital electrodes in lab-on-chip devices[J]. Sensor, 2015, 15: 2694-2708. [37] ZHAO Y, XU Z, PARHIZKAR M, et al. Magnetic liquid marbles, their manipulation and application in optical probing[J]. Microfluid Nanofluid, 2012, 13(4): 555-564. [38] NGUYEN N T, LASSEMONO S, CHOLLET F A. Optical detection for droplet size control in microfluidic droplet-based analysis systems[J]. Sens Actuators B Chem, 2006, 117(2): 431-436. [39] JIANG G F, ATTIYA S, OCVIRK G, et al. Red diode laser induced fluorescence detection with a confocal microscope on a microchip for capillary electrophoresis[J]. Biosens Bioelectron, 2000, 14(10/11): 861-869. [40] BASU A S. Droplet morphometry and velocimetry (DMV):a video processing software for time-resolved, label-free tracking of droplet parameters[J]. Lab Chip, 2013, 13(10): 1892-1901. [41] 陈海秀, 成顶, 胡祯林. 图像分析在液滴检测技术中的应用[J]. 传感器与微系统, 2016, 35(4): 157-160. CHEN H X, CHENG D, HU Z L. Application of image analysis in liquid droplet detection technology[J]. Transd Microsys Technol, 2016, 35(4): 157-160. [42] 李智磊, 李静岚, 陈缵光, 等. 微流控芯片技术在药物分析领域的研究进展[J]. 中国药房,2019, 30(16): 2279-2284. LI Z L, LI J L, CHEN Z G, et al. Research progress of microfluidic chip technology in drug analysis[J]. J China Pharm, 2019, 30(16): 2279-2284. [43] WANG F, BURNS M A. Multiphase bioreaction microsystem with automated on chip droplet operation[J]. Lab Chip, 2010, 10: 1308-1315. [44] JORG S, GRODRIAN A, ROBERT R, et al. Online optical detection of food contaminants in microdroplets[J]. Eng Life Sci, 2009, 9(5): 391-397. [45] UWE P, DIETER F, MARKUS S, et al. Testing miniaturized electrodes for impedance measurements within the β-dispersion-a practical approach[J]. J Electr Bioimp, 2010, 1: 41-55. [46] 金亚, 罗国安. 微流控芯片中超微电极的制作及其在芯片-电化学检测中的应用[J]. 高等学校化学学报, 2003, 24(7): 1180-1184. JIN Y, LUO G A. Fabrication of the microfluidic chips with integrated ultra-micro electrodes and its application in on-chip electrochemical detection[J]. J Chem Chinese Univ, 2003, 24(7):1180-1184. [47] 杨文栋. 微流控芯片中液滴的阻抗检测研究[D]. 大连:大连理工大学, 2013. YANG W D. Impedance detection of droplets in microfluidic chip[D]. Dalian:Dalian University of Technology, 2013. [48] LUO C, YANG X, FU Q, et al. Picoliter-volume aqueous droplets in oil: electrochemical detection and yeast cell electroporation[J]. Electrophoresis, 2006, 27(10): 1977-1983. [49] ELBUKEN C, GLAWDEL T, CHAN D, et al. Detection of microdroplet size and speed using capacitive sensors[J]. Sens Actuator A, 2011, 171(2):55-62. [50] DEMORI M, FERRARI V, POESIO P, et al. A microfluidic capacitance sensor for fluid discrimination and characterization[J]. Sens Actuator A, 2011, 172(1): 212-219. [51] HU X, LIN X, HE Q, et al. Electrochemical detection of droplet contents in polystyrene microfluidic chip with integrated micro film electrodes[J]. J Electroanal Chem, 2014, 726(24): 7-14. [52] ISGOR P K, MARCALI M, KESER M, et al. Microfluidic droplet content detection using integrated capacitive sensors[J]. Sens Actuators B, 2015, 210: 669-675. |