
应用化学 ›› 2025, Vol. 42 ›› Issue (2): 212-221.DOI: 10.19894/j.issn.1000-0518.240324
收稿日期:
2024-10-16
接受日期:
2024-12-27
出版日期:
2025-02-01
发布日期:
2025-03-14
通讯作者:
陈前火,李红周
基金资助:
Ao-Tian ZHANG, Jun-Jie SHI, Qian-Huo CHEN(), Hong-Zhou LI(
)
Received:
2024-10-16
Accepted:
2024-12-27
Published:
2025-02-01
Online:
2025-03-14
Contact:
Qian-Huo CHEN,Hong-Zhou LI
About author:
lihongzhou@fjnu.edu.cnSupported by:
摘要:
利用9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)、2-氨基苯并噻唑(ABZ)和吲哚-3-甲醛(I3C)分两步成功合成了一种新型的多元素协同阻燃剂(DAI),采用傅里叶变换红外光谱(FT-IR)和核磁共振(NMR)光谱验证了DAI的成功合成,然后使用热固法将其与环氧树脂(EP)共混,制备了EP/DAI-3、EP/DAI-5和EP/DAI-7。 研究了所制备EP复合材料的阻燃性能、燃烧后的残炭性能等。结果表明,制备的EP复合材料具有出色的抑烟和阻燃性能,特别是添加了质量分数7% DAI的EP,其热释放速率峰值(pHRR)、CO释放速率峰值(pCOPR)和CO2释放速率峰值(pCO2PR)分别显著降低了34.5%、32.3%和 42.2%。 与纯EP相比,EP/DAI-7的极限氧指数(LOI)值达到了32.6%,并在UL-94测试中达到V-0等级。残炭分析表明,制备的EP/DAI-7的残炭比纯EP更加致密更加坚固,ID/IG的数值达到2.03,其石墨化程度最高。
中图分类号:
张傲天, 史俊杰, 陈前火, 李红周. 氮磷阻燃剂的合成及其在环氧树脂中的阻燃应用[J]. 应用化学, 2025, 42(2): 212-221.
Ao-Tian ZHANG, Jun-Jie SHI, Qian-Huo CHEN, Hong-Zhou LI. Synthesis of Nitrogen-Phosphous Flame Retardants and Their Flame Retardant Applications in Epoxy Resins[J]. Chinese Journal of Applied Chemistry, 2025, 42(2): 212-221.
Sample | w(EP)/% | w(DDM)/% | w(DAI)/% | w(P)/% | w(N)/% |
---|---|---|---|---|---|
EP | 80.00 | 20.00 | 0.00 | 0.00 | 0.00 |
EP/DAI-3 | 77.60 | 19.40 | 3.00 | 0.19 | 0.26 |
EP/DAI-5 | 76.00 | 19.00 | 5.00 | 0.31 | 0.43 |
EP/DAI-7 | 74.40 | 18.60 | 7.00 | 0.44 | 0.60 |
表1 EP/DAI阻燃复合材料配方表
Table 1 Formula of EP/DAI flame retardant composite
Sample | w(EP)/% | w(DDM)/% | w(DAI)/% | w(P)/% | w(N)/% |
---|---|---|---|---|---|
EP | 80.00 | 20.00 | 0.00 | 0.00 | 0.00 |
EP/DAI-3 | 77.60 | 19.40 | 3.00 | 0.19 | 0.26 |
EP/DAI-5 | 76.00 | 19.00 | 5.00 | 0.31 | 0.43 |
EP/DAI-7 | 74.40 | 18.60 | 7.00 | 0.44 | 0.60 |
图1 (A)合成DAI的示意图; (B)DAI及DOPO、I3C和ABZ的FT-IR谱图; (C) DAI的1H NMR谱图
Fig.1 (A) Schematic diagram of synthesized DAI; (B) FT-IR spectra of DAI and DOPO, I3C and ABZ; (C) 1H NMR spectrum of DAI
Sample | Char residue at 800 ℃/% | T5%/℃ | T10%/℃ | Maximum mass loss rate/(%·℃-1) |
---|---|---|---|---|
EP | 16.4 | 370.8 | 376.5 | 2.20 |
EP/DAI-3 | 19.8 | 354.8 | 363.8 | 1.61 |
EP/DAI-5 | 18.9 | 350.2 | 361.3 | 1.50 |
EP/DAI-7 | 19.0 | 352.7 | 361.2 | 1.54 |
表2 TGA测试数据
Table 2 Data of TGA test
Sample | Char residue at 800 ℃/% | T5%/℃ | T10%/℃ | Maximum mass loss rate/(%·℃-1) |
---|---|---|---|---|
EP | 16.4 | 370.8 | 376.5 | 2.20 |
EP/DAI-3 | 19.8 | 354.8 | 363.8 | 1.61 |
EP/DAI-5 | 18.9 | 350.2 | 361.3 | 1.50 |
EP/DAI-7 | 19.0 | 352.7 | 361.2 | 1.54 |
图5 EP、EP/DAI-3、EP/DAI-5和EP/DAI-7的(A) HRR、(B) THR、(C) SPR、(D) TSP、(E) COPR和(F) CO2PR曲线
Fig.5 (A) HRR, (B) THR, (C) SPR, (D) TSP, (E) COPR, (F) CO2PR curves of EP, EP/DAI-3, EP/DAI-5 and EP/DAI-7
Samples | TTI/s | pHRR/(kW·m-2) | THR/(MJ·m-2) | pSPR/(m2·s-1) | TSP/m2 | pCOPR/(g·s-1) | pCO2PR/(g·s-1) |
---|---|---|---|---|---|---|---|
EP | 115 | 1004.7 | 81.1 | 0.28 | 26.5 | 0.034 | 0.64 |
EP/DAI-3 | 90 | 992.8 | 61.7 | 0.26 | 21.8 | 0.040 | 0.63 |
EP/DAI-5 | 96 | 763.7 | 65.7 | 0.34 | 26.8 | 0.039 | 0.45 |
EP/DAI-7 | 80 | 657.2 | 67.7 | 0.23 | 29.1 | 0.023 | 0.37 |
表3 EP、EP/DAI-3、EP/DAI-5和EP/DAI-7复合材料的锥形量热数据
Table 3 CCT data of EP, EP/DAI-3, EP/DAI-5 and EP/DAI-7 composites
Samples | TTI/s | pHRR/(kW·m-2) | THR/(MJ·m-2) | pSPR/(m2·s-1) | TSP/m2 | pCOPR/(g·s-1) | pCO2PR/(g·s-1) |
---|---|---|---|---|---|---|---|
EP | 115 | 1004.7 | 81.1 | 0.28 | 26.5 | 0.034 | 0.64 |
EP/DAI-3 | 90 | 992.8 | 61.7 | 0.26 | 21.8 | 0.040 | 0.63 |
EP/DAI-5 | 96 | 763.7 | 65.7 | 0.34 | 26.8 | 0.039 | 0.45 |
EP/DAI-7 | 80 | 657.2 | 67.7 | 0.23 | 29.1 | 0.023 | 0.37 |
图6 EP、EP/DAI-3、EP/DAI-5和EP/DAI-7炭渣的(A)数码照片、(B)SEM照片和(C)拉曼光谱图
Fig.6 (A) Digital photographs, (B) SEM photographs and (C) Raman spectra of the char residues of EP, EP/DAI-3, EP/DAI-5 and EP/DAI-7
1 | WANG G F, LI H F, SHAO Y R, et al. Preparation method of biogenic phytic acid and chitosan-related epoxy resin flame retardant: a review[J]. J Polym Res, 2023, 30(7): 269. |
2 | MATHEWS L D, CAPRICHO J C, PEERZADA M, et al. Recent progress and multifunctional applications of fire-retardant epoxy resins[J]. Mater Today Commun, 2022, 33: 104702. |
3 | XIAO Z T, WU G L, YANG T M, et al. Sustainably sourced and DOPO-derived triols as hardeners for epoxy thermosets: a promising solution to synchronously improve flame retardancy, mechanical strength and toughness[J]. Chem Eng J, 2024, 498: 155484. |
4 | ZHANG Y B, YAN H X, FENG G P, et al. Non-aromatic Si, P, N-containing hyperbranched flame retardant on reducing fire hazards of epoxy resin with desirable mechanical properties and lower curing temperature[J]. Compos Part B, 2021, 222: 109043. |
5 | ZHOU C Y, WU K X, ZHANG Y, et al. Alginic acid derivatives/DOPO modified epoxy resins: excellent flame retardancy, mechanical properties, chemical resistance[J]. Polym Degrad Stab, 2024, 225: 110778. |
6 | YU Y Y, TANG S, FENG D, et al. Non-covalently functionalized black phosphorene to efficient flame retardant EVA with improved mechanical properties[J]. Polym Degrad Stab, 2024, 225: 110777. |
7 | PHAM L H, NGUYEN N T, NGUYEN D M, et al. Effective non-halogen flame-retardants combined with nSiO2 particles to improve thermal stability and fire resistance of high-performance polyurethane nanocomposite foams[J]. J Mater Sci Technol, 2024, 203: 1-13. |
8 | RAD E R, VAHABI H, DE ANDA A R, et al. Bio-epoxy resins with inherent flame retardancy[J]. Prog Org Coat, 2019, 135: 608-612. |
9 | WANG P, CHEN L, XIAO H, et al. Nitrogen/sulfur-containing DOPO based oligomer for highly efficient flame-retardant epoxy resin[J]. Polym Degrad Stab, 2020, 171: 109023. |
10 | 林渊, 陈嘉炼, 李红周. 单宁酸/聚乙烯醇的阻燃性能[J]. 应用化学, 2023, 40(1): 69-78. |
LIN Y, CHEN J L, LI H Z. Flame retardant properties of tannic acid/poly(vinyl alcohol)[J]. Chin J Appl Chem, 2023, 40(1): 69-78. | |
11 | KANDOLA B K, MAGNONI F, EBDON J R. Flame retardants for epoxy resins: application-related challenges and solutions[J]. J Vinyl Addit Technol, 2022, 28(1): 17-49. |
12 | CHEN Q, WANG S, LI S X, et al. Highly efficient phosphorous-containing flame retardant for transparent epoxy resin with good mechanical properties[J]. J Polym Res, 2023, 30(1): 32. |
13 | YANG Y X, WANG D Y, JIAN R K, et al. Chemical structure construction of DOPO-containing compounds for flame retardancy of epoxy resin: a review[J]. Prog Org Coat, 2023, 175: 107316. |
14 | 史俊杰, 史哲航, 李红周. 磷系阻燃剂插层镁铝型水滑石复合物的制备及其在热塑性聚氨酯中的阻燃应用[J]. 应用化学, 2023, 40(9): 1288-1301. |
SHI J J, SHI Z H, LI H Z. Preparation of magnesium aluminum-type hydrotalcite compounds intercalated with phosphorus flame retardants and their flame retardant application in thermoplastic polyurethane[J]. Chin J Appl Chem, 2023, 40(9): 1288-1301. | |
15 | WANG P, CHEN L, XIAO H. Flame retardant effect and mechanism of a novel DOPO based tetrazole derivative on epoxy resin[J]. J Anal Appl Pyrolysis, 2019, 139: 104-113. |
16 | ZOU Y B, SHI J J, CUI W Q, et al. Isopropanolamine-modified ammonium polyphosphate for improved flame retardancy of epoxy resin[J]. J Appl Polym Sci, 2024, 141(25): e55526. |
17 | KIM H H, SIM M J, LEE J C, et al. The effects of chemical structure for phosphorus-nitrogen flame retardants on flame retardant mechanisms[J]. J Mater Sci, 2023, 58: 6850-6864. |
18 | YUAN Y, SHI Y Q, YU B, et al. Facile synthesis of aluminum branched oligo(phenylphosphonate) submicro-particles with enhanced flame retardance and smoke toxicity suppression for epoxy resin composites[J]. J Hazard Mater, 2020, 381: 121233. |
19 | SHEN J J, LIANG J W, LIN X F, et al. The flame-retardant mechanisms and preparation of polymer composites and their potential application in construction engineering[J]. Polymers, 2022, 14(1): 82. |
20 | QIN C L, CHEN J, RUAN S S, et al. Theoretical study on the effect of oxidation states of phosphorus flame retardants on their mode of action[J]. Polym Degrad Stab, 2024, 223: 110735. |
21 | PENG W, NIE S B, XU Y X, et al. A tetra-DOPO derivative as highly efficient flame retardant for epoxy resins[J]. Polym Degrad Stab, 2021, 193: 109715. |
22 | GUO W W, YU B, YUAN Y, et al. In situ preparation of reduced graphene oxide/DOPO-based phosphonamidate hybrids towards high-performance epoxy nanocomposites[J]. Compos Part B, 2017, 123: 154-164. |
23 | SHI Z H, LUO F B, LI H Z, et al. Synthesis of a graft-functionalized flame retardant based on DOPO and its application on the surface of terylene/cotton fabrics[J]. J Appl Polym Sci, 2024, 141(8): 54976. |
24 | HUO S Q, SAI T, RAN S Y, et al. A hyperbranched P/N/B-containing oligomer as multifunctional flame retardant for epoxy resins[J]. Compos Part B, 2022, 234: 109701. |
25 | CAI H P, HUANG W Y, LI B L, et al. A multi-element flame retardant for rail transit to improve the flame retardant performance of epoxy resin while reducing smoke density[J]. J Appl Polym Sci, 2024, 141(4): e54841. |
26 | LU J Y, CHEN L P, LUO Z L, et al. A vanillin-containing DOPO-based compound for improving the flame retardancy of epoxy resin simultaneously with comparable transparency and mechanical property[J]. J Appl Polym Sci, 2023, 140(9): e53556. |
27 | KIM H H, SIM M J, LEE J C, et al. The effects of chemical structure for phosphorus-nitrogen flame retardants on flame retardant mechanisms[J]. J Mater Sci, 2023, 58: 6850-6864. |
28 | WAN C, DUAN H J, ZHANG C H, et al. A P/N/S-containing compound toward enhanced fire safety epoxy resin with well-balanced performance[J]. Polym Degrad Stab, 2021, 192: 109698. |
29 | 杨雪艳, 史俊杰, 周勇军, 等. 磷系阻燃剂插层镁铝水滑石增强环氧树脂的阻燃性能[J]. 应用化学, 2024, 41(8): 1154-1167. |
YANG X Y, SHI J J, ZHOU Y J, et al. Enhanced flame retardancy of epoxy resins by intercalation of magnesium-aluminum hydrotalcite with phosphorus-based flame retardants[J]. Chin J Appl Chem, 2024, 41(8): 1154-1167. | |
30 | WEI Z B, CHEN X L, JIAO C M. Thermal degradation and flame retardancy of fumaric acid in thermoplastic polyurethane elastomer[J]. Polym Adv Technol, 2019, 30(2): 475-482. |
31 | HUANG G B, CHEN W, WU T, et al. Multifunctional graphene-based nano-additives toward high-performance polymer nanocomposites with enhanced mechanical, thermal, flame retardancy and smoke suppressive properties[J]. Chem Eng J, 2021, 410: 127590. |
32 | LIU C, WU W, SHI Y Q, et al. Creating MXene/reduced graphene oxide hybrid towards highly fire safe thermoplastic polyurethane nanocomposites[J]. Compos Part B, 2020, 203: 108486. |
33 | LIU Y, ZHAO J, DENG C L, et al. Flame-retardant effect of sepiolite on an intumescent flame-retardant polypropylene system[J]. Ind Eng Chem Res, 2011, 50(4): 2047-2054. |
34 | LI W J, LUO F B, DAI Y M, et al. Fabrication of highly efficient flame-retardant and biocompatible ramie fabrics through covalent bonding and layer-by-layer assembly methods[J]. Cellulose, 2024, 31(14): 9025-9042. |
35 | ZOU Y B, CUI W Q, CHEN D L, et al. In situ-generated heat-resistant hydrogen-bonded organic framework for remarkably improving both flame retardancy and mechanical properties of epoxy composites[J]. ACS Appl Mater Interfaces, 2023, 15(40): 47463-47474. |
36 | WANG X, WU T, HONG J, et al. Organophosphorus modified hollow bimetallic organic frameworks: effective adsorption and catalytic charring of pyrolytic volatiles[J]. Chem Eng J, 2021, 421: 129697. |
[1] | 杨雪艳, 史俊杰, 周勇军, 戴玉梅, 李红周. 磷系阻燃剂插层镁铝水滑石增强环氧树脂的阻燃性能[J]. 应用化学, 2024, 41(8): 1154-1167. |
[2] | 卢紫微, 刘永福, 罗朝华, 孙鹏, 蒋俊. Cr3+掺杂的宽带近红外荧光粉研究进展[J]. 应用化学, 2024, 41(3): 328-339. |
[3] | 史俊杰, 史哲航, 李红周. 磷系阻燃剂插层镁铝型水滑石复合物的制备及其在热塑性聚氨酯中的阻燃应用[J]. 应用化学, 2023, 40(9): 1288-1301. |
[4] | 王梦瑶, 高美珍, 石琪, 董晋湘. 基于甲苯模板合成的ZIF-93及其对1,3-丙二醇和2,3-丁二醇的吸附分离性能[J]. 应用化学, 2023, 40(9): 1302-1311. |
[5] | 范鹏辉, 刘杰, 娄生辉, 唐涛. 环氧树脂中磷系阻燃剂协效体系的研究进展[J]. 应用化学, 2023, 40(5): 653-665. |
[6] | 陈淑敏, 吕子全, 邹旋, 桂水清, 卢雪梅. 新冠常态下功能性口罩研究进展[J]. 应用化学, 2023, 40(11): 1504-1517. |
[7] | 韩志鹏, 秦冲, 周金向, 余明, 陈兆彬. 浇注型环氧树脂基耐高温中子屏蔽复合材料[J]. 应用化学, 2023, 40(10): 1420-1429. |
[8] | 温景惠, 赵冰, 阚伟, 王丽艳, 孙立, 宋天舒, 宋波. 可区别铁离子荧光探针异构体的合成及其水样分析[J]. 应用化学, 2022, 39(5): 787-796. |
[9] | 唐永鑫, 聂立武. 环氧树脂掺量对发光树脂透水混凝土性能的影响[J]. 应用化学, 2022, 39(11): 1665-1671. |
[10] | 闫宇飞, 陈继, 李凯, 邹丹, 李德谦. 含氟硫酸介质中伯胺N1923对Ce(Ⅳ)的萃取[J]. 应用化学, 2022, 39(02): 307-314. |
[11] | 顾军渭, 程蓓, 杨旭彤. 液晶功能化氮化硼/液晶环氧树脂导热复合材料的制备[J]. 应用化学, 2021, 38(10): 1382-1388. |
[12] | 游歌云, 冯彬, 范方方, 杨昌杰, 梁聪. 含亚胺结构新型磷-氮协效阻燃化合物的合成及对环氧树脂的阻燃作用[J]. 应用化学, 2020, 37(2): 144-154. |
[13] | 刘西德, 周迪, 张兆顺. 1,2,3,9-四氢咔唑-4-酮生产废液处理及氯化锌回收利用[J]. 应用化学, 2020, 37(1): 117-122. |
[14] | 侯成敏,李娜,董海涛,寇艳萍. 含氟环氧树脂杂化纳米二氧化硅超疏水材料的制备与性能[J]. 应用化学, 2019, 36(7): 798-806. |
[15] | 王换换,卢松涛,秦伟,吴晓宏. MoS2@Co9S8蛋黄壳复合材料的制备及其电化学性能[J]. 应用化学, 2018, 35(8): 956-962. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 29
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 72
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||