1 |
PAN Y, ZHANG H, CHEN Y, et al. Applications of hyperspectral imaging technology combined with machine learning in quality control of traditional Chinese medicine from the perspective of artificial intelligence: a review[J]. Crit Rev Anal Chem, 2023, 29: 1-15.
|
2 |
BAI Z, HU X, TIAN J, et al. Rapid and nondestructive detection of sorghum adulteration using optimization algorithms and hyperspectral imaging[J].Food Chem, 2020, 30(331): 127-290.
|
3 |
姚坤杉, 孙俊, 陈晨, 等. 基于高光谱技术的三七不同部位粉末的无损鉴别[J]. 光谱学与光谱分析, 2023, 43(7): 2027-2031.
|
|
YAO K S, SUN J, CHEN C, et al. Nondestructive identification of powder from different parts of Panax pseudoginseng based on hyperspectral technique[J]. Spectrosc Spectral Anal, 2023, 43(7): 2027-2031.
|
4 |
高梁喨. 基于高光谱技术的柑橘品质检测研究[D]. 雅安: 四川农业大学, 2023.
|
|
GAO L L. Research on citrus quality detection based on hyperspectral technology[D]. Ya'an: Sichuan Agricultural University, 2023.
|
5 |
DE OLIVEIRA ZANUSO B, DE OLIVEIRA DOS SANTOS A R, MIOLA V F B, et al. Panax ginseng and aging related disorders: a systematic review[J]. Exp Gerontol, 2022, 161: 111731.
|
6 |
LEE I S, KANG K S, KIM S Y. Panax ginseng pharmacopuncture: current status of the research and future challenges[J]. Biomolecules, 2019, 10(1): 33.
|
7 |
余江锋, 罗吉, 黄亿健, 等. 吉林省不同种类人参UPLC-PDA指纹图谱及化学模式识别研究[J]. 中药材, 2019, 42(4): 822-827.
|
|
YU J F, LUO J, HUANG Y J, et al. UPLC-PDA fingerprinting and chemical pattern recognition of different species of ginseng in Jilin Province[J]. Chin Mater Med, 2019, 42(4): 822-827.
|
8 |
肖霞, 曹俊凯. 人参当归颗粒的薄层鉴别[J]. 中国实用医药, 2012, 7(9): 249-250.
|
|
XIA X, CAO J K. Thin-layer identification of ginseng and angelica granules[J]. Chin Practical Med, 2012, 7(9): 249-250.
|
9 |
ZHU H, LIN H, TAN J, et al. UPLC-QTOF/MS-based nontargeted metabolomic analysis of mountain-and garden-cultivated ginseng of different ages in northeast China[J]. Molecules, 2018, 24(1): 33.
|
10 |
ZHANG L, WANG P, LI S, et al. Differentiation of mountain- and garden-cultivated ginseng with different growth years using HS-SPME-GC-MS coupled with chemometrics[J]. Molecules, 2023, 28(5): 2016.
|
11 |
LEE B J, KIM H Y, LIM S R, et al. Discrimination and prediction of cultivation age and parts of Panax ginseng by Fourier-transform infrared spectroscopy combined with multivariate statistical analysis[J]. PLoS One, 2017, 12(10): e 0186664.
|
12 |
YANG S, SHIN Y S, HYUN S H, et al. NMR-based metabolic profiling and differentiation of ginseng roots according to cultivation ages[J].J Pharm Biomed Anal, 2012, 58: 19-26.
|
13 |
刘秋安, 徐芳芳, 张欣, 等. 基于近红外光谱技术和分类与回归树算法建立天舒片崩解时间预测模型[J]. 中草药, 2021, 52(16): 4837-4843.
|
|
LIU Q A, XU F F, ZHANG X, et al. Establishment of a disintegration time prediction model for Tianshu tablets based on near-infrared spectroscopy and classification and regression tree algorithms[J]. Chin Herbal Med, 2021, 52(16): 4837-4843.
|
14 |
LI X, WEI Y, XU J, et al. SSC and pH for sweet assessment and maturity classification of harvested cherry fruit based on NIR hyperspectral imaging technology[J]. Postharvest Biol Technol, 2018, 143: 112-118.
|
15 |
ABDI H, WILLIAMS L J. Partial least squares methods: partial least squares correlation and partial least square regression[J]. Methods Mol Biol, 2013, 930: 549-579.
|
16 |
HEMMATEENEJAD B, MIRI R, ELYASI M. A segmented principal component analysis--regression approach to QSAR study of peptides[J]. J Theor Biol, 2012, 305: 37-44.
|
17 |
MCKEARNAN S B, VOCK D M, MARAI G E, et al. Feature selection for support vector regression using a genetic algorithm[J]. Biostatistics, 2023, 24(2): 295-308.
|
18 |
傅晨, 王开军. 决定系数与相关系数相关系数辅助的LASSO回归[J]. 福建师范大学学报(自然科学版), 2024, 40(2): 57-63, 89.
|
|
FU C, WANG K J. LASSO regression assisted by coefficient of determination and correlation coefficient[J]. J Fujian Norm Univ (Nat Sci Ed), 2024, 40(2): 57-63, 89.
|
19 |
徐萍, 米琪, 罗文秀, 等. 滇重楼皂苷近红外光谱快速定量分析模型建立[J/OL]. 中成药, 1-7[2024-05-20].
|
|
XU P, MI Q, LUO W X, et al. Modeling of near-infrared spectroscopy for rapid quantitative analysis of Dianthus annuus saponins[J/OL]. Proprietary Chin Med, 1-7[2024-05-20].
|
20 |
陈露萍, 徐芳芳, 张欣, 等. 基于偏最小二乘法建立大株红景天片素片硬度近红外光谱预测模型[J]. 中草药, 2023, 54(8): 2446-2452.
|
|
CHEN L P, XU F F, ZHANG X, et al. Establishment of a near-infrared spectral prediction model for the hardness of Rhodiola rosea tablets based on the partial least squares method[J]. Chin Herbal Med, 2023, 54(8): 2446-2452.
|
21 |
LI H, LIANG Y, XU Q, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J]. Anal Chim Acta, 2009, 648(1): 77-84.
|
22 |
ZHU H, CHU B, ZHANG C, et al. Hyperspectral imaging for presymptomatic detection of tobacco disease with successive projections algorithm and machine-learning classifiers[J]. Sci Rep, 2017, 7(1): 4125.
|
23 |
HAN Q, WU H, CAI C, et al. An ensemble of Monte Carlo uninformative variable elimination for wavelength selection[J]. Anal Chim Acta, 2008, 612(2): 121-125.
|
24 |
YU H, LU J, ZHANG G. Continuous support vector regression for nonstationary streaming data[J]. IEEE Trans Cybern, 2022, 52(5): 3592-3605.
|
25 |
刘子健, 顾佳盛, 周聪, 等. 基于高光谱成像技术的山楂产地判别研究[J]. 食品工业科技, 2024, 45(10): 282-291.
|
|
LIU Z J, GU J S, ZHOU C, et al. Research on the origin discrimination of hawthorn based on hyperspectral imaging technology[J]. Food Ind Sci Technol, 2024, 45(10): 282-291.
|